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Abstract

Nonlinear systems analysis combining blood oxygen level dependent (BOLD), functional magnetic resonance imaging (fMRI) and
m-sequence stimulation paradigms are proposed as a new method for exploring neuronal responses and interactions. Previous studies of
electrical activity in the human visual cortex have observed significant nonlinearities of task-induced activity with temporal dynamics on
a timescale of 10–20 ms. Despite the confounding effect of the seconds-long hemodynamic response, it is demonstrated that BOLD fMRI
can be used to probe neuronal interactions on a time scale of tens of ms. Visual activation experiments were performed with various stimuli,
and amplitude maps of first and second order kernel coefficients were generated using correlation analysis. Second order nonlinearities in
BOLD fMRI were observed and attributed to temporal contrast caused by transitions in the stimulus sequence. In addition, the kernel maps
showed significant differences between second order nonlinearities of foveal and peripheral vision. By including a reference experiment with
a slightly modified stimulus presentation, a distinction could be made between (fast) neuronal nonlinearities and hemodynamic effects on
the time scale of the seconds. The results indicate that BOLD fMRI can probe fast neuronal nonlinearities.

Introduction

Nonlinear systems analysis of brain function provides
valuable information about neuronal processes and interac-
tion. Electrical recordings have been used to analyze various
brain functions, with a large number focusing on the visual
system. Substantial nonlinear effects have been noted along
the visual pathway, including retina, lateral geniculate nu-
cleus (LGN), and cortex. Although electrical recordings can
provide exquisite temporal information of spiking processes
and development of local field potentials, they are either
invasive or have limited spatial resolution. Functional mag-
netic resonance imaging (fMRI) based on blood oxygen
level dependent (BOLD) contrast has excellent spatial res-
olution, but its temporal resolution is compromised by the
substantial blurring and it has potential nonlinearities
caused by the vascular effects that are responsible for its
contrast mechanism. However, despite these limitations, a

recent study has suggested that BOLD fMRI can be used to
study specific neuronal interactions (Ogawa et al., 2000).
The temporal resolution of BOLD fMRI is thought to be
primarily limited by the slow hemodynamic response to
neuronal processes. In order to estimate the hemodynamic
response function, a number of authors have investigated
the temporal dynamics of the fMRI signal in response to
neuronal stimulation. Several research groups have investi-
gated linearity of the fMRI BOLD response (Ogawa et al.,
2000; Boynton et al., 1996; Glover, 1999; Vazquez and
Noll, 1998; Friston et al., 1998; Birn et al., 2001). The
principle of linear superposition has been tested (Boynton et
al., 1996; Vazquez and Noll, 1998) by varying the stimulus
duration and amplitude, and deviations from linearity were
observed. The cause of the nonlinear fMRI response has
been hypothesized (Friston et al., 2000) to be due to blood
flow and BOLD effect based on a balloon model (Buxton et
al., 1998). The primary motivation for estimating the he-
modynamic response function has been for optimizing the
detection of fMRI BOLD activation. In practice, the sim-
plifying assumption of linear superposition is often used
(Boynton et al., 1996; Bandettini et al., 1993; Friston et al.,
1994).
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In order to characterize nonlinear systems, Volterra–
Wiener functional expansions may be used to model the
system by analyzing the system response to appropriate
input stimuli. The Volterra and Wiener models have been
applied to several areas. For example, Marmarelis and Mar-
marelis (1978) applied the Wiener theory to modeling and
identification of biological systems. Friston et al. (1998)
characterized the BOLD response using a Volterra kernel
model, and estimated first and second order kernels of a
truncated second order model using a basis fitting approach.
Basis fitting enforces a model that may result in an incorrect
kernel estimate. The approach taken here using correlation
analysis does not require basis fitting. A comprehensive
description on the Volterra and Wiener theories of nonlinear
systems is given by Schetzen (1980) and a concise survey
and history of nonlinear system identification methods is
presented by Billings (1980).

Nonlinear systems analysis using m-sequence probe
stimuli was described by Sutter (1987). The m-sequence
method offers practical benefits of ease of implementation
as well as reduced statistical fluctuation as compared to
white Gaussian noise probes. Application of m-sequence
probing has been described for measuring the second order
nonlinear neuronal response of the visual system using
electrode recordings (Benardete and Kaplan, 1997; Reid et
al., 1997; Baseler and Sutter, 1997; Sutter, 2001). Benardete
and Victor (1994) describe an extension of the m-sequence
technique for multi-input systems analysis.

Here, we propose the application of the m-sequence
probing method to produce fMRI maps of the first and
second order responses for several visual stimuli. The mea-
sured fMRI BOLD response to the visual stimulus is the
result of a cascade of neuronal responses from the retina,
LGN, and cortex, as well as the hemodynamic and BOLD
effect (Buxton et al., 1998; Miller et al., 2001). It will be
shown that, by including a reference experiment with a
slightly modified stimulus presentation, the method allows
distinction between (fast) neuronal nonlinearities and ef-
fects on the time scale of the seconds-long BOLD response.
The observed second order response disappeared by intro-
ducing a decorrelating delay between m-sequence stimuli
which was larger in duration than presumed neuronal re-
sponse (tens of ms) but smaller than the BOLD effect
(several seconds). Based on the assumption that the tempo-
ral dynamics of the neuronal system are much faster than
the hemodynamic effects, these tests indicate that the sec-
ond order response was predominately neuronal related cor-
responding to transitions in the stimulus sequence.

Methods

Nonlinear systems identification

The Volterra and Wiener models of nonlinear systems
with memory can be used to analyze systems without as-

suming a known internal structure. The Volterra series ex-
pansion of the system output, y(t), in response to an input
x(t) may be written as
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n�0

T

k1�n� x�t � n� �

�
n1�0
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� . . . , (1)

with Volterra functionals defined by multidimensional con-
volutions with Volterra kernels ki (n1, n2,. . .ni), and T as
the system memory. Wiener (1958) proposed an orthogo-
nalization procedure for the Volterra functionals using
white Gaussian noise as the input stimulus. The Wiener
model is an orthonormal expansion obtained by applying
the Gram–Schmidt procedure to the Volterra functional
representation,

y�t� � �h0� � ��
n�0

T

h1�n� x�t � n��
� � �

n1�0
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h2�n, n�� � . . . , (2)

where the Wiener functionals (bracketed expressions) are
orthogonal and �2 is the noise power assuming white
Gaussian noise input, x(t). Based on Wiener’s results, Lee
and Schetzen (1965) developed a practical cross-correlation
method for measuring Wiener kernels with white Gaussian
noise input, x(t). The first several Wiener kernels, hn, may
be measured by the correlation method as

h0 � �y�t��

h1�n� � �y�t� x�t � n��

h2�n1,n2� �
1

2!
�y�t� x�t � n1� x�t � n2��, for n1 � n2.

(3)

Note that if the actual system is indeed second order, i.e.,
Volterra kernels are zero for higher orders, then the Volterra
and Wiener kernels are the same, with the exception of the
diagonal terms. However, for higher order systems, trun-
cated second order Volterra and Wiener models are differ-
ent.
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M-sequence probes may be used instead of white Gauss-
ian noise to reduce statistical fluctuation in the kernel esti-
mate. The use of m-sequence probes has been described by
Sutter, and a mathematical treatment has been presented by
Benardete and Victor (1994) that includes the anomalous
correlations that result due to the algebraic structure of the
m-sequences. By replacing the white Gaussian noise probe
by an m-sequence and integrating over a full period, the
resultant estimates contain a small bias, order of 1/P where
P is the period of the sequence, plus anomalous contribu-
tions which arise as a consequence of the fact that the true
system is higher order than the model, and that the m-
sequence probe has higher order auto-correlations. The bias
is generally negligible for reasonable length sequences. The
anomalous correlations may be largely mitigated by using
the inverse repeat method and by judicious choice of m-
sequence. The inverse repeat method consists of measuring
the system response to both the m-sequence and its inverse
(inverting polarity of bits). In this way, the odd and even
order responses may be separated by calculating the sum
and difference of the m-sequence correlations, respectively.
For nonlinear systems with a small number of non-zero
kernel coefficients, it is often possible to choose a sequence
which will separate the remaining desired terms (described
later). This was the approach used in this work. Benardete
and Victor (1994) propose a hybrid m-sequence method in
order to further mitigate anomalies, if required, based on a
probe consisting of sums of m-sequences (multilevel se-
quence).

Cascade system

Nonlinear systems identification by a functional expan-
sion, as described above, produces a nonparametric repre-
sentation (“black box”), as opposed to a block structured
approach based on a system model. The measured fMRI
BOLD response to visual stimuli is actually a cascade sys-
tem which includes the complete retinocortical path as well
as neurovascular, and hemodynamic responses and their
effect on blood oxygenation and MRI signal strength. The
identification of structured models of nonlinear cascade
systems is very complex, if indeed possible, and is not
proposed here. Nevertheless, it is of interest to discriminate,
if possible, whether the second order response in the fMRI
BOLD measurement is caused by nonlinearities which are
neuronal in origin or due to the hemodynamic response. The
neurovascular mechanisms may contain fast as well as slow
components. The neuronal response is characteristically fast
with response time on the order of tens of ms, whereas the
hemodynamic contribution to the measured BOLD response
is several seconds in duration. A simplified model shown in
Fig. 1 separates the fast and slow responses, ignoring feed-
back responses such as adaption of the pupil or cortical
input to the LGN. Such a cascade model suggests that probe
measurements may possibly be designed to discriminate fast
and slow responses. This was examined by repeated mea-
surement of the second order response after introducing a
small delay or gap each period between the presentation of
stimuli which were controlled by the m-sequence bits. The
gap served to decorrelate the measured second order re-
sponse (i.e., correlation with transitions). A uniform gray
stimulus with zero contrast was presented during the gap.

Consider each nonlinear system to be a simple Wiener
model (LN) consisting of a cascade of dynamic linear sys-
tem (L1) with memory and a static, memoryless nonlinearity
(N1). Fig. 2 shows the inputs and outputs of the hypothetical
L1N1 model for various experimental paradigms (details

Fig. 1. Simplified model of cascade of nonlinear systems, each comprised
of various sources (feedback mechanisms not shown).

Fig. 2. Simulated waveforms for bullseye-reversal paradigm without gap (a–e) and with a 200-ms gap (f–j) illustrating: (a,f) input intensity; (b,g) signed
(spatial) contrast; (c,h) linear filter (L1) output; (d,i) rectified (L1N1) output; and (e,j) m-sequence correlation with output of nonlinear cascade (L1N1L2N2)
system model.
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below) to illustrate the effect of a small decorrelating delay
(gap). Figs. 2a–e correspond to a bullseye-reversal para-
digm without a gap and Figs. 2f–j have a 200-ms gap. The
inputs (Fig. 2a) are the image intensity for the first 16 bits
of the m-sequence, where values 0, 1/2, and 1 correspond to
black, gray, and white, respectively, and the intensity is for
a check that is initially white. The spatial contrast is plotted
in Fig. 2b, calculated at the edges between black and white.
It is assumed that the signed contrast is input to a bandpass
linear filter (L1) followed by nonlinear rectification (N1).
The filter has an attenuated DC response which determines
the sensitivity to constant luminance. The linear filter output
is shown in Fig. 2c and rectified output in Fig. 2d. The L1N1

output shown in Fig. 2d consists of spikes at the m-sequence
bit transitions giving rise to a second order kernel h2(i,i-1)
(off-diagonal), whereas, by introducing a delay which is
longer than the filter response duration, the output, Fig. 2i,
consists of a constant train of spikes which is uncorrelated
with the sequence or transitions. The resultant output of a
cascade of fast and slow nonlinear dynamic systems was
simulated using a L1N1L2N2 sandwich model, where L1N1

corresponds to the fast neuronal system described above,
and L2N2 corresponds to the much slower hemodynamic
response. Plots of the full-period m-sequence correlation
with the L1N1L2N2 cascade output are shown in Figs. 2e and
j corresponding to no gap and 200-ms gap, respectively. The
L2N2 model used a lowpass filter (L2) with 3.5-s half-width
response followed by rectification (N2). Note that the bulls-
eye-reversal paradigm has no linear kernel response in this
model, since the bipolar signed contrast signal proportional
to the m-sequence is constant after rectification. Using a gap
which is shorter than the linear filter response duration
would not decorrelate the second order response.

Using a bullseye-gray experimental paradigm results in a
linear kernel response both with and without a delay (gap)
since the proportional signal (DC response) is unipolar, and
contains a proportional signal after rectification. Fig. 3
shows a simulation of the L1N1L2N2 model system for the

bullseye-gray stimulus paradigm, with and without gap. The
results and interpretation of these experiments will be de-
scribed later. The results would be similar using a slightly
more complicated sandwich model (LNL).

Stimulus timing

The binary m-sequence 0’s and 1’s were used to select
between visual stimuli for the various experimental para-
digms. The m-sequence was extended to include a portion
of the next period to enable discarding of the initial tran-
sient. The extended m-sequence was then inverted and re-
peated. Using a 255-length m-sequence, the extended se-
quence was 300 bits, which yielded a total of 600 bits for the
length of the run with the inverse repeat, corresponding to a
10-min duration scan at 1 s repetition per volume. For
specific experiments, a small (variable) gap (e.g., 200 ms)
was introduced between bits during which the visual stim-
ulus was switched to gray. In this case, the bullseye would
appear for 800 ms followed by 200 ms gray.

Block paradigms were used to produce t-score maps of
the fovea and periphery regions. Block paradigms repeat-
edly alternated between 30 s fovea bullseye reversals and
30 s bullseye annulus reversals for a total of 300 s (images
described below).

Binary m-sequence selection

The binary m-sequence used was selected such that the
second order responses resulting from the first several sec-
ond order kernel coefficients would not overlap with the
linear response. In order to ensure that second order kernel
responses h2(i,i–j) at the first several lag delays (j �
1,2,3,. . .) have adequate delay separation, the following
design criterion was used. The linear kernel (hemodynamic
response function) has a several seconds width (full width
half maximum) but is followed by a lengthy undershoot.
The total response duration was estimated to be approxi-

Fig. 3. Simulated waveforms for bullseye-gray paradigm without gap (a–e) and with a 200-ms gap (f–j) illustrating: (a,f) input intensity; (b,g) signed (spatial)
contrast; (c,h) linear filter (L1) output; (d,i) rectified (L1N1) output; and (e,j) m-sequence correlation with output of nonlinear cascade (L1N1L2N2) system
model.
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mately 20 s. It was desired to maximally separate the second
order responses for at least the first 5 lag delays, where each
lag corresponds to the m-sequence bit period � 1 s (imaging
frame repetition). Using the shift and add property of the
m-sequence (Golomb, 1968), i.e., ai–k � ai Q ai–j where Q

denotes a mod 2 sum, a binary m-sequence was chosen with
period 28	1 � 255 (generated by a linear feedback shift
register with taps at 4, 5, 6, and 8) and was computed to
have a minimum separation of 24 bits (s) for the first 6 lag
delays, which occur at j � 25, 49, 221, 97, 134, and 186. In
this way, the off-diagonal slices of the second order kernel
h2(i,i–j) � rxy(i–j) (i � 1, 2, . . . 20 and j � 1, 2, . . . 5) will
be separated, where rxy is the full-period m-sequence cor-
relation. Tests were conducted using other m-sequences and
the second order correlations were detected at other delay
lags as predicted (not shown).

Visual stimuli

The visual stimuli were displayed using the Presentation
software application (Neurobehavioral Systems, Inc.) run-
ning on a PC, which was triggered once per second by the
MR scanner to synchronize the stimulus with data acquisi-
tion. An LCD projector (Sharp Notevision6) with long
throw lens was used to project the images onto a screen
directly in front of the magnet bore. Maximum luminance
varied between 85 and 105 cd/m2, as measured with a
Minolta LS100 luminance meter with the projection screen
set up outside the magnet. The image intensity reached 90%
of the on or off value within 10 ms of a change, as measured
with a photodiode. Bullseye images were black and white
(100% contrast) with check size scaled with eccentricity
(see Fig. 4A) in an attempt to maintain a constant stimula-
tion across the area of primary visual cortex (i.e., constant
spatial frequency across the receptive field) (Horton and
Hoyt, 1991). The full bullseye spanned an eccentricity of
approximately 8.2° and had a small central spot that alter-
nated slowly between two colors as a fixation task. Various
paradigms included: (1) bullseye and reverse, (2) bullseye
and uniform gray, (3) uniform black and white disk, and (4)
bullseye (2.5° eccentricity corresponding to foveal region)
and bullseye annulus (2.5–8.2° periphery excluding fovea).
The foveal and peripheral annulus bullseyes are shown in
Figs. 4b and c, respectively. In paradigms 1–3 a uniform
gray image was used in cases which used a gap between bits

of the m-sequence. The gray level was set to maintain a
constant luminance, i.e., midway between black and white
after gamma correction. The gamma correction was impor-
tant to minimize flicker due to scattered light.

Imaging parameters

Imaging was performed on a GE 3T LX scanner using
various head coils. A single-shot echo-planar imaging se-
quence was used with the following parameters: TE � 40
ms, TR � 1 s, 70° RF flip angle, ramp sampled with 23 ms
acquisition window, and 8 slices acquired each TR. The
acquisition matrix was 64 
 48 with typically 24 cm FOV
(3/4 phase FOV) producing a nominal resolution of 3.75 

3.75 mm2 and 4 mm slice thickness. A bipolar gradient
crusher was used to reduce contribution from large vessels.
The image plane orientation was parallel to the calcarine
fissure, with the volume containing the V1 cortical region.
The initial image in each scan provided a low-resolution
T2*-weighted anatomical reference. In addition, high-reso-
lution anatomical scans were performed as well. All indi-
viduals in this study were normal, healthy volunteers giving
informed consent. This study was performed in accordance
with an NIH-approved protocol, reviewed by the NINDS
IRB.

Processing and analysis

Raw data were acquired by the scanner and all process-
ing was performed in software. Image reconstruction was
performed using IDL (RSI Inc., Boulder, CO), subpixel
volume registration using a C-language program (Thévenaz
and Unser, 1998), and correlation processing and analysis
was performed using Matlab (The Mathworks, Natick,
MA). Cross-correlations were calculated for each pixel us-
ing an FFT approach for which low-frequency bins were
attenuated to reduce influence of drift terms. Circular cor-
relation with the full period m-sequence reference was per-
formed, where the first 32 samples of transient were dis-
carded at both the start of the run and the start of the inverse
repeat (halfway into data). Correlation coefficients (versus
time delay), �(�), were calculated for each pixel by normal-
izing the correlation score rxy(�) by the standard deviation of
the raw signal intensity fluctuation for each pixel. Estimate
of the first off-diagonal elements of the second order kernel
was h2(i,i	1) � �(i 	 25), based on the specific m-se-
quence used (where the correlation waveform � is assumed
to include the inverse repeat method). The above estimate
ignores the fractional delay (between 0 and 1) in timing of
image acquisition which varies for the eight slices acquired.

Mean correlation values for both first and second order
response using the bullseye-gray paradigm were measured
in the foveal and peripheral regions for nine volunteers. The
foveal and peripheral regions were determined using the
block paradigm by thresholding the t-scores that were gen-
erated by a regression analysis, which used a truncated

Fig. 4. Visual stimulus images used in various experimental paradigms: (A)
bullseye; (B) foveal bullseye; and (C) peripheral annulus.
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Gaussian (� � 3.5 s) to model the hemodynamic response
function. All image data were spatially registered for each
experiment. Correlation scores were not temporally
smoothed (matched filtered) for the hemodynamic response
function; therefore the detection sensitivity is less than op-
timal.

Results

Fig. 5 shows example images using the bullseye-gray
experimental paradigm. Fig. 5A is an intensity image for
anatomical reference, and Fig. 5B is the t-score for the block
design using the foveal bullseye and peripheral bullseye
annulus. The foveal regions correspond to negative t-scores

(black) and the peripheral regions correspond to positive
values (white). Correlation coefficient maps for the first
(linear) and second (nonlinear) order responses are shown in
Figs. 5C and D, respectively, using no gap between m-
sequence stimuli. Correlation maps for the first and second
order responses with a 200-ms gap between bits of the
m-sequence are shown in Figs. 5E and F, respectively. The
first order response is stronger in the foveal than peripheral
region, while the second order response is stronger in the
peripheral region. The second order response is greatly
diminished using a gap of 200 ms (shown in Fig. 5F) as
compared to no gap (shown in Fig. 5D). The second order
response is displayed inverted, i.e., negative is bright, since
the sign of h2 is negative.

Example plots of the raw correlation waveforms from
single pixels are shown in Figs. 6 and 7 to further illustrate
the method and the relative strength of first and second
order responses. The top plots are the superimposed raw
correlation waveforms for normal and inverted polarity m-
sequence stimulus probe to illustrate the inverse repeat
method. The difference (center) and sum (bottom) corre-
spond to odd and even order responses, respectively (scaled
by 1/2 to reflect the average). Fig. 6 is from a pixel in the
foveal region where the first order response is stronger. Fig.
7 is from a pixel in the peripheral region where the second
order response is stronger. The first order response (estimate
of linear hemodynamic response function) shows the char-
acteristic undershoot following the main peak which is

Fig. 5. Example fMRI images: (A) T2*-weighted signal intensity; (B)
fovea-periphery t-score map; (C) and (D) first and second order response
maps for bullseye-gray paradigm without gap, respectively; and (E) and (F)
first and second order response maps for bullseye-gray paradigm with a
200-ms gap, respectively.

Fig. 6. Example correlation plots for pixel in foveal region using bullseye-
gray paradigm: (a) raw correlation for inverse repeat; (b) odd order re-
sponse (difference); and (c) even order response (sum).

Fig. 7. Example correlation plots for pixel in peripheral region using
bullseye-gray paradigm: (a) raw correlation for inverse repeat; (b) odd
order response (difference); and (c) even order response (sum).
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delayed approximately 3–4 s. Note that the second order
response is delayed by 25 bits (s). There are no other
stronger correlation responses at delays corresponding to
other lag delays in the second order kernel, i.e., at 49 bits
corresponding to ai Q ai	2 (see Discussion).

Figs. 8 and 9 show example images for bullseye-reversal
and uniform disk-reversal (i.e., black and white) experimen-
tal paradigms (with no gap), respectively. Both cases exhibit
no detectable linear response and significant second order
response in the peripheral region. Fig. 10 plots the correla-
tion waveform of a pixel in the peripheral region for the
uniform disk case where the first order response is nonde-
tectable, and the second order response is still fairly strong.
Note that unlike for the bullseye, the correlation map for the
disk has a significant response for the far periphery. This is
due to the fact that a small amount of scattered light causes
a temporal flicker in the magnet bore which stimulates the
peripheral vision. The scattered light for the bullseye-rever-
sal and bullseye-gray paradigms have constant mean lumi-
nance (after gamma correction), and, therefore, there is no
temporal flicker to stimulate the periphery.

The mean correlation values using the bullseye-gray par-
adigm are graphed in Fig. 11 for nine experiments (seven
volunteers). The first order response in the foveal region is
generally stronger than in the periphery (P � 0.13, paired t
test) (Fig. 11a), while the second order response is generally
stronger in the peripheral region (P � 0.005) (Fig. 11b). The
mean correlation values for the second order response in the

peripheral region is shown in Fig. 11c comparing data
acquired with no gap and with a 200-ms gap (note that only
seven datasets used both paradigms). The second order
response is greatly reduced using a gap of 200 ms (P �
0.002).

Discussion

General remarks

The estimation efficiency of the hemodynamic response
using the m-sequence probe method has been shown to be

Fig. 8. Example fMRI images: (A) T2*-weighted signal intensity; (B)
fovea-periphery t-score map; and (C) and (D) first and second order
response maps for bullseye-reverse paradigm without gap, respectively.

Fig. 9. Example fMRI images: (A) T2*-weighted signal intensity; (B)
fovea-periphery t-score map; and (C) and (D) first and second order
response maps for uniform disk paradigm without gap, respectively.

Fig. 10. Example correlation plots for pixel in peripheral region using
uniform disk paradigm: (a) raw correlation for inverse repeat; (b) odd order
response (difference); and (c) even order response (sum).
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near the achievable limit for event-related paradigms (Bu-
racas and Boynton, 2002). The detection power of the first
and second order response maps was degraded by two
factors. The lowpass filter hemodynamic response reduced
the correlation amplitude since a base period of 1 s was used
for the m-sequence probe. Furthermore, temporal smooth-
ing (matched filtering) was not used. The 1-s base period
was chosen purposefully to oversample the hemodynamic
response in order to test the hypothesis that the second order
response was predominantly neuronal (i.e., single strong
off-diagonal kernel coefficient). Temporal smoothing of the
correlation waveform using an estimate of the kernel may
be employed to reduce noise fluctuation. However, the ker-
nel exhibited significant variations between subjects as well
as across activated pixels within a subject. Several adaptive
methods were tested which were found to improve the
detectability for cases which were already reasonably good,
but which were insufficiently robust to apply in all cases.
The detection sensitivity of the block paradigm used to
identify foveal and peripheral regions was significantly bet-
ter than the m-sequence correlation maps; thus the threshold
maps used to mask correlation scores shown in Fig. 11
included low signal-to-noise ratio pixels.

Significant gains can be made by means of basis fitting
approaches using regression methods (Friston et al., 1998;
Marmarelis, 1993); however, these approaches were specif-
ically avoided to prevent incorrect model assumptions. In
particular, while the hemodynamic response function is
sufficiently sampled, the neuronal response is under sam-
pled. The basis fitting method using Laguerre polynomial
(Marmarelis, 1993) and gamma density (Friston et al.,
1998) functions was tested. Basis fitting using a set of
orthonormal Laguerre polynomials showed no improvement
in the second order kernel estimate since it is insufficiently
sampled. Basis fitting using a set of gamma density func-
tions (Friston et al., 1998) provided an incorrect model fit
which overestimated the contribution of off-diagonal terms.
The correlation method does not make any model assump-
tions, although the correlation values must be interpreted. A
benefit of calculating the complete correlation waveform
(all delays across full period) is the ability to observe the
presence of higher order nonlinearities based on detecting

additional anomalous peaks, which arise from the algebraic
structure of the m-sequence.

Interpretation of results

The first issue of interpretation is whether the observed
second order nonlinear response is due to the inherent non-
linearities of the visual system, to the BOLD response, or
possibly to a mixture of effects. The contention is that the
observed nonlinearity is predominantly neuronal in origin
since the second order response largely disappears, using
decorrelating delays on the order of hundreds of ms, which
are long with respect to temporal dynamics associated with
neurons, yet shorter than the hemodynamic response. This
implies that a significant fraction of the second order re-
sponse is due to a “fast” system characteristic of neuronal
responses. Limited detectability prevents sensitive measure-
ment of the weaker responses. Nevertheless, it is presumed
that if the second order response was predominantly BOLD,
the response h2(i, i–j) would be reasonably strong for sev-
eral off-diagonal values of delay j based on the presumed
Wiener model (LN cascade) for the BOLD effect where the
linear system (L2) has a response duration of several sec-
onds (purposefully oversampled). In the case of the bulls-
eye-reversal paradigm with gap, there are no m-sequence
components to create an observable second order response
(see Fig. 2 model outputs); thus any hemodynamic response
nonlinearity (N2) would not cause a second order response.
However, in the case of the bullseye-gray paradigm with
gap, there is still an m-sequence component due to the
proportional linear response of filter L1 (see Fig. 3 model
outputs); thus a hemodynamic response nonlinearity (N2)
could contribute to the second order response. The model
nonlinearity (rectification) used for Fig. 3 did not contribute
to the second order response since the input signal was
mostly unipolar as a result of earlier rectification (by N1).
Other forms of nonlinearity (e.g., squarer) could lead to a
second order contribution. Other sources of nonlinearity
with longer duration temporal dynamics are feedback mech-
anisms involving the LGN and/or pupil, and intracortical
adaptation. In a few instances, a response was discernible at
h2(i, i-2), possibly caused by nonlinearity of the hemody-

Fig. 11. Mean correlation scores for (a) first order (linear) response in fovea and periphery; (b) second order (nonlinear) response in fovea and periphery;
and (c) second order response in periphery with and without gap.
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namic response. Nevertheless, these experiments show that
the fast neuronal response is the predominant source of the
second order response. Finally, the finding that the strength
of the second order response increased in the peripheral
region is more likely to be a characteristic of the visual
system and not a BOLD effect. While previous literature
(Glover, 1999; Vazquez and Noll, 1998; Friston et al., 1998;
Birn et al., 2001) suggests that the observed nonlinear re-
sponse is related to the BOLD hemodynamic response,
these findings were unable to distinguish between neuronal
and hemodynamic effects based on the data. Furthermore,
these studies have been conducted with considerably longer
duration stimuli.

Given the assertion that the second order response
map is related to the visual response, modeling the com-
plete retinocortical path is a complex subject. Emerson et
al., (1989) developed a structured block model of a non-
linear system which was comprised of a cascade of LNL
systems for the retina, LGN, and cortex. In this model,
the retina and LGN were modeled as a parallel cascade of
“on” and “off” cells which were recombined by summa-
tion at the cortical input for a simple cell. In this way, the
cortex was presented with the equivalent of a linear
system input, since effects of the nonlinearities for “on”
and “off” channels were balanced. The fMRI observa-
tions of the cortex were insufficient to validate this hy-
pothesis; however, it might be possible to perform func-
tional imaging of the LGN and/or retina with m-sequence
probing to estimate first and second order responses
which might help disentangle the complex cascade.

Preliminary findings are that the peripheral visual sys-
tem has greater sensitivity to temporal contrast than the
foveal region. Fig. 9D indicates that even a small per-
centage of bore flicker stimulates the peripheral vision
with change in luminance (temporal contrast). Differ-
ences in the sensitivity and temporal characteristics of M-
and P-cells, associated with peripheral and foveal re-
gions, respectively, have been observed (in Macaque)
(Derrington and Lennie, 1984). Baseler and Sutter (1997)
have reported measured differences (in humans) in the
amplitude of second order responses between P- and
M-pathways using surface electrode recordings of visual
evoked potential (VEP). The data in Fig. 11 depend on
the specific eccentricity used for foveal vs peripheral
stimulation (block paradigm), and may exhibit a more
significant difference for a smaller foveal region.

Conclusions

Mapping of nonlinear response using fMRI provides a
new method with potential for exploring neuronal responses
and interactions. This method was demonstrated by map-
ping the primary visual system response. Probing of other

areas may help further identify the system model. Refine-
ment of this method for increased detection efficiency is
being investigated.
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