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The temporal generalized autocalibrating partially parallel ac-
quisitions (TGRAPPA) algorithm for parallel MRI was modified
for real-time low latency imaging in interventional procedures
using image domain, B1-weighted reconstruction. GRAPPA co-
efficients were calculated in k-space, but applied in the image
domain after appropriate transformation. Convolution-like op-
erations in k-space were thus avoided, resulting in improved
reconstruction speed. Image domain GRAPPA weights were
combined into composite unmixing coefficients using adaptive
B1-map estimates and optimal noise weighting. Images were
reconstructed by pixel-by-pixel multiplication in the image do-
main, rather than time-consuming convolution operations in
k-space. Reconstruction and weight-set calculation computa-
tions were parallelized and implemented on a general-purpose
multicore architecture. The weight calculation was performed
asynchronously to the real-time image reconstruction using a
dedicated parallel processing thread. The weight-set coeffi-
cients were computed in an adaptive manner with updates
linked to changes in the imaging scan plane. In this imple-
mentation, reconstruction speed is not dependent on accel-
eration rate or GRAPPA kernel size. Magn Reson Med 61:
1425–1433, 2009. © 2009 Wiley-Liss, Inc.
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Parallel MRI (pMRI) methods aim to increase imaging
speed using multiple receiver coils and k-space undersam-
pling. Each receiver coil is placed at a different location on
the patient, thus acquiring the same data modulated by its
unique spatial sensitivity pattern. For accelerated imaging,
k-space is undersampled in the phase-encode direction,
which causes aliasing in the image domain. The aliasing is
then corrected using the coil sensitivity information. Sev-
eral pMRI methods have been proposed, including the
well-known image domain sensitivity encoding (SENSE)
(1) and k-space domain generalized autocalibrating par-
tially parallel acquisitions (GRAPPA) (2) algorithms. The
proposed approach uses the GRAPPA algorithm for k-
space weight calculation, which is beneficial when a
smaller field of view (FOV) is desired, as this method is
more tolerant of image wrap (3). Autocalibration was per-

formed using a time interleaved acquisition scheme simi-
lar to that employed in TSENSE (4) by combining several
R (acceleration factor) consecutive frames to form a low
temporal resolution full k-space dataset for B1 mapping, as
done in temporal GRAPPA (TGRAPPA) (5).

Real-time TSENSE implementation has been demon-
strated to work well with interventional applications (6).
However, to the best of our knowledge TGRAPPA has not
yet been deployed in such applications with real-time,
low-latency image reconstruction. This may be due to the
fact that the TGRAPPA algorithm uses convolution-like
operations to estimate the missing k-space data, requiring
significantly greater computation than TSENSE. In the orig-
inally described GRAPPA, both the calculations of weights
and the reconstruction take place in k-space. However, as the
convolution operation in the k-space domain is equivalent to
multiplication in the image-domain, computational de-
mands of the GRAPPA algorithm can be greatly reduced if a
hybrid k-space and image-domain reconstruction is used (7–
9). Additionally, with this hybrid approach it is possible to
remove dependency of reconstruction speed on kernel size
and acceleration rate, which improves the applicability of the
algorithm to real-time interventional applications.

In TGRAPPA reconstruction, the final image is obtained
by combining per coil images using root sum of squares
(RSS) in order to avoid dephasing. In this work, we re-
placed the RSS combining with adaptive B1-weighted
combining (10), which further increases the computational
speed over previous approaches (7) and improves signal-
to-noise ratio (SNR) characteristics. In this approach, k-
space domain GRAPPA weights for each coil are calcu-
lated and transformed into the image domain. After the
transformation, these per-coil image domain weights are
linearly combined into a composite set of unmixing coef-
ficients using an estimated sensitivity map. These precalcu-
lated weights are then applied to the aliased images to recon-
struct a single unaliased image (as in SENSE) with significant
computational reduction over previous GRAPPA implemen-
tations. A noise correlation matrix is calculated and used for
noise-weighting the GRAPPA coefficients in order to im-
prove SNR in the reconstructed images.

In this work, we demonstrate a parallelized hybrid
TGRAPPA implementation, HTGRAPPA, with improved
reconstruction speed and continuously updated autocali-
bration for real-time, multislice, interactive MRI.

MATERIALS AND METHODS

The TGRAPPA algorithm uses data from all coils in the
estimation of the missing data of a particular coil. The
amount of missing data depends on the acceleration rate R,
as it determines the number of phase-encoding steps to
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skip during the acquisition. Let Nc denote the number of
receiver coils. After acquisition of k-space data from each
coil (c, kx, ky), R � 1 samples per measured sample must be
synthesized in order to fill out the acquisition matrix. The
estimates of these missing samples for a given coil are
calculated using blocks of [Y � X] neighboring acquired
samples from all the receiver coils. The size of the block is
an important parameter that has impact on the image qual-
ity and reconstruction speed. Figure 1 represents examples
of [4 � 5] and [2 � 5] blocks at one k-space location with
the missing k-space samples for R � 3.

R � 1 unknown points of a particular block B of a
particular coil c� are estimated by least squares solution as
a linear combination of the source samples of all the re-
ceiver coils in the block B. Thus, each target point in block
B requires (X � Y � Nc) GRAPPA weighting coefficients.
Once these weights are computed, they are used for esti-
mating the target points in each block.

S(c,i,j) denotes the (i, j)th element of the acquired data in
the corresponding block of data from coil c (i.e., the square
samples in Fig. 1). Let Wc�p(c,i,j) be the set of GRAPPA
weight coefficients that is used to weight the samples
S(c,i,j) in order to synthesize Tc�p, the pth missing sample of
the target block c� (i.e., the stars in Fig. 1). This relation can
be expressed as:

�
c�1

Nc �
i�1

X �
j�1

Y

S�c,i,j�Wc�p�c,i,j� � Tc�p. [1]

Equation 1 can also be represented in matrix form, SW �
T, where S is the matrix containing the data acquired by all
coils, W is the weight-set coefficients matrix for all coils,
and T is the matrix of the missing sample estimates. If S
and T are known, W can be calculated by W � (SHS)�1SHT,

with SH being the complex conjugate transpose of S. There-
fore, weighting coefficients Wc�p(c,i,j) are calculated after
filling the matrices S and T with autocalibration signal
(ACS) data SACS(c,i,j) using least squares estimation of the
overdetermined system formed by considering all the
blocks of the fully sampled autocalibration data.

As the number of sample points (block size) from the
autocalibration data increases, the accuracy of the weight-
sets also increases. If the region of support for which the
weights are estimated is not enough, artifact suppression
may be insufficient. The fully sampled ACS data used in
Eq. [1] is obtained by sliding window of R frames as
described in Ref. (5).

Even though the weight-set calculation is computation-
ally demanding, it is not required to perform it for each
acquired frame. Once it is calculated, it can be used to fill
the missing points in k-space for multiple frames. How-
ever, it is desired to update the weights as often as possible
so that they adapt to the changes in the coil sensitivity
profiles. If the image encoding process changes (e.g., due to
a change of scan plane or movement of the receiver coil
array), a new weight-set is required.

Application of the weights to estimate the missing k-
space samples (using Eq. [1]) is computationally less de-
manding than calculating the weight-sets. In particular, for
real-time reconstruction this calculation must be very
rapid. The calculation of GRAPPA coefficients in the con-
ventional manner (2) is computationally more demanding
than corresponding image-based parallel imaging methods
(e.g., SENSE), due to the fact that the GRAPPA algorithm is
based on a convolution type process. Also, the require-
ment to reconstruct each individual coil further increases
both computational and data management demands. In
(T)GRAPPA, the size of the acquisition matrix; the number
of receiver coils Nc; the acceleration rate, R; and the block

FIG. 1. Squares represent source
(acquired) samples, and stars rep-
resent the target points (missing
samples to be estimated). a: R � 3,
block size [4 � 5] (4 lines, 5 source
points per line, and 2 target points).
b: R � 3, block size [2 � 5] (2 lines,
5 source points per line, and 2 tar-
get points).
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size [Y � X] are the parameters that define the reconstruc-
tion speed.

TGRAPPA Reconstruction in the Image Domain

The convolution-type operation expressed in Eq. [1] is
performed in the k-space domain. By transforming the
weights into the image domain, the convolution-type op-
eration can be replaced by a direct multiplication, reduc-
ing the dependency of the reconstruction speed to just the
acquisition matrix size and the number of receiver coils
Nc. Since the TGRAPPA weights are calculated in the
k-space, but the reconstruction is realized in the image-
domain, this method is called HTGRAPPA (hybrid
TGRAPPA) reconstruction.

The transformation starts by combining the p � [1 : R-1]
weight-sets Wc�p(c, � , � ), relating the acquired data in coil
c to the missing data from coil c�. This combination yields
Nc k-space convolution kernels Wc�c(kx,ky) for each coil, c�.
In the next step the kernel is zero-filled to the same matrix
size as the actual images and inverse Fourier transform is
applied to the k-space kernels for transforming them into
the image-domain.

wc�c
img � F�1�Wc�c� [2]

Once Nc image-domain kernels are obtained for each
coil, these kernels must be combined into one composite
unmixing coefficient kernel per coil. The composite un-
mixing coefficients uc

comp of coil c is obtained by pixel-by-
pixel multiplication of each wc�c

img by complex conjugate of
B1-map estimates b1c�, calculated from the temporal aver-
age of data from each coil and summing over coils. This
relation is expressed as:

uc
comp � �

c��1

Nc

wc�c
img � b1c�

* [3]

where � denotes pixel-by-pixel multiplication operator.
To perform image reconstruction in the image domain,

the undersampled k-space data, Dc(kx,ky) from each coil,
c � [1:Nc], is transformed into the image-domain, yielding
Nc aliased images Ic

aliases:

Ic
aliased � F�1�Dc� [4]

These aliased images are combined into the final esti-
mated image by pixel-by-pixel multiplication with com-
posite unmixing coefficients:

Ifinal � �
c�1

Nc

Ic
aliased � uc

comp [5]

which is a phased array combiner as in SENSE unmixing.
Equation [5] implies that the reconstruction speed for our
implementation does not depend on either R or the block
size. Furthermore, computation is greatly reduced as the
convolution operation is replaced by a pixel-by-pixel mul-
tiplication, and multicoil root sum-of-squares magnitude
operation is no longer required for final image formation.

Noise-Weighted Unmixing Coefficients

Optimal noise-weighted combining may be used to maxi-
mize the SNR of the phased array combined image (11). Let
Rn be the noise correlation matrix defined as follows (12):

Rij �
1
N�

k�1

N

ni�k�n*j �k� [6]

where Rij represents a component of the matrix Rn, ni(k)
represents the k-th sample of noise data for coil i. The
optimum noise-weighted unmixing coefficients are com-
puted using b1Rn

�1. Noise weighting improves the SNR of
the reconstructed images with no additional computation
required in image reconstruction, and only minor addi-
tional computation in weight-set calculation.

Implementation

Weight-set calculation (both k-space and image domain)
and image reconstruction algorithms are implemented in
C/C�� for high performance. Weight-set calculation and
image reconstruction were computed (asynchronously) in
parallel using general-purpose 8 dual-core AMD Opteron
8220 processor (2.8 GHz) on Linux-2.6.16.46-0.12-smp.
Pthreads (http://pasc.org) library is used for the parallel-
ization of the reconstruction algorithm, and OpenMP
(http://openmp.org) library is used for the parallelization
of the weight-set calculation. The code compiled on GCC
(http://gcc.gnu.org) v. 4.2.2 for OpenMP support. For dis-
playing the reconstructed images, the OpenGL library
(http://opengl.org) is used. Matrix inversions, required for
the least-squares calculation of the weight-set coefficients
from the autocalibration data, were calculated using the
ATLAS library (http://math-atlas.sourceforge.net). The
FFTW library (http://fftw.org) was used for fast Fourier
transformations.

Weight-set calculation is the most time-consuming step
of the whole process. Thus, this calculation must be sep-
arated from the reconstruction: it is performed asynchro-
nously to the image reconstruction in order not to slow
reconstruction speed. During the reconstruction the most
current weights are used. The reconstruction process uses
Nc threads created by Pthreads library. Reconstruction
threads are created once at the beginning and the same
threads are used during the whole execution. That way,
continuous context switching, which means decreased
performance, is avoided. Another thread recalculates the
weights using the most current autocalibration data per-
mitting the reconstruction to track the changes in the coil
sensitivities. At initialization, and when scan-plane is
changed, new weight-sets must be calculated as quickly as
possible in order to produce useful images as soon as
possible. At that point, multithreaded weight-set calcula-
tion process uses all system CPUs for faster calculation.
The view-sharing method (13) is used until the first
weight-set calculation is over. The number of CPUs used
for weight-set calculation may be decreased dynamically
following weight-set initialization to a minimum number
of CPUs, thereby devoting more CPU resources to image
reconstruction. Dynamic allocation of the thread number
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is realized by OpenMP library. The use of OpenMP im-
proves the scalability of our reconstruction program and
makes it possible to deploy the same program on different
multicore architectures.

Our implementation works with real-time multislice ac-
quisitions and can be controlled interactively: acceleration
rate R, the number of CPUs to use during the weight-set
calculation, block size, and reference data size to use can
be changed dynamically to suit different imaging require-
ments. When the slice plane has changed, view-sharing is
used until the weight-sets are ready to deploy. The block
diagram of the reconstruction scheme is presented in
Fig. 2.

RESULTS

Real-time cardiac images from healthy individuals were
acquired using a Siemens Magnetom Avanto 1.5T and
short, wide-bore Siemens Magnetom Espree 1.5T (Siemens
Medical Solutions, Erlangen, Germany). The following pa-
rameters were used during the experiments: TR � 3.06 ms,
flip angle � 45°, bandwidth � 800 Hz/pixel, acquisition
matrix � 192 � 108. First, MR signals were collected using
18 receiver coils; 6 elements on the chest and 12 under the
spine. A balanced steady state free precession (SSFP) (14)
sequence was used with the S5FP (15) method for real-time
suppression of fat and flow artifacts during this experi-
ment. Second, data were acquired using a 32-element array

(Invivo, Birmingham, MI), 16 elements on the chest, 16
elements under the spine. Final data with an acquisition
matrix of 192 � 108 was acquired using 30 receiver coils.
The HTGRAPPA imaging technique was employed to im-
prove temporal resolution with acceleration factors up to
rate R � 4.

Performance

Our hybrid TGRAPPA implementation’s performance re-
sults for the weight-set calculation on the first dataset
(acquisition matrix of 192 � 108, Nc�18) are given in
Table 1 for acceleration rates of R � 2, 3, 4, using various
block sizes [2 � 3], [2 � 5], [2 � 7], [4 � 3], and [4 � 5]. In
all, 48 autocalibration lines were used for weight-set cal-
culations. HTGRAPPA reconstruction performance results
are independent of acceleration factor R and block sizes, as

FIG. 2. Block diagram of the reconstruction algorithm is given. The upper dotted rectangle represents the weight-set calculation process,
and the lower dotted rectangle represents the reconstruction process. These processes are executed asynchronously.

Table 1
Weight-set Calculation Times (in sec) for HTGRAPPA

Rate [2 � 3] [2 � 5] [2 � 7] [4 � 3] [4 � 5]

2 0.495 0.702 0.969 0.726 1.320
3 0.510 0.712 0.973 0.779 1.339
4 0.530 0.751 0.989 0.795 1.428

Different acceleration (R) values and block sizes of [2 � 3], [2 � 5],
[2 �7], [4 � 3], and [4 � 5] when 16 CPUs are used (18 acquisition
coils, acquisition matrix of 192 � 108, 48 ACS lines).

1428 Saybasili et al.



our algorithm removes the acceleration rate and block size
dependency of the image reconstruction step. The HT-
GRAPPA weight-set calculation results given in Table 1
include the calculation of the k-space GRAPPA weights,
the transformation of the k-space weight-sets into image-
domain, and the calculation of the noise-weighted com-
posite unmixing coefficients. If noise weighting is dis-
abled, the calculations are 0.11 sec faster than the values
indicated in Table 1.

The images from the first dataset were also reconstructed
using a conventional TGRAPPA algorithm with asynchro-
nous weight-set calculation, and compared to our hybrid
algorithm. Table 2 represents side-by-side reconstruction
performance comparison (in seconds) of TGRAPPA with
HTGRAPPA.

Images

Figure 3 shows real-time reconstructed images from our
first dataset (Nc � 18, acquisition matrix of 192 � 108) for
2 interleaved slices (long and short axis views) using the
HTGRAPPA method at acceleration rates 2, 3, and 4. Par-
allel imaging artifacts are not apparent in each case. Fur-
thermore, long axis images, which were intentionally pre-
scribed with reduced FOV to cause prefolding, are recon-
structed robustly demonstrating a benefit of GRAPPA over
SENSE. When smaller blocks are used (e.g., [2 � 3]), arti-
fact suppression is slightly degraded. However, the slight
difference between small and large block sizes that is
apparent during dynamic imaging is less apparent in still
images, and therefore are not shown.

Figure 4 compares, from left to right, images recon-
structed from our second dataset (Nc � 32, acquisition
matrix of 192 � 108, R � 4) using TSENSE, TGRAPPA
(non-real-time) and HTGRAPPA (real-time) algorithms.
Both large and small FOV images are given for comparing
the prefolding artifact robustness of HTGRAPPA with
TGRAPPA and TSENSE algorithms. Upper images repre-
sent larger FOV (380 mm), and lower images represent
images with smaller FOV (320 mm).

Our reconstruction system adapts dynamically to the
slice orientation changes during the scan by switching to
view-sharing for a few imaging frames. Figure 5 shows a
series of images reconstructed in real time from our third
dataset (Nc � 30, acquisition matrix of 192 � 108, R � 4)
with HTGRAPPA, where slice orientation is changed dur-
ing scan-time. The behavior of our reconstruction scheme
after the scan plan change is as follows: our reconstruction
system switches to view-sharing while the new weight-set

calculation is in progress, and switches back to HT-
GRAPPA when the new weight-sets are ready to use.

Figure 6 shows a series of rate 4 images of full heart
cycle (16 images), with matrix size of 192 � 108 and 3

4
partial phase Fourier acquisition with TR � 3.06 ms. Each
reconstruction is performed after the acquisition of only 20
lines, resulting in a frame rate of �16/sec. The images
show that HTGRAPPA can be used to image full cardiac
cycle without aliasing artifacts or temporal blurring.

DISCUSSION

With image domain hybrid TGRAPPA reconstruction, im-
age-domain reconstruction speed is unaffected by in-
creased acceleration rates and increased block sizes. Thus,
larger GRAPPA kernels may be employed for superior
artifact suppression and still achieve real-time reconstruc-
tion. Reconstruction speed of 0.008 sec per frame (125
frames/sec) is demonstrated on current computer hard-
ware with 18 channel data and acquisition matrix of 192 �
108. Thus, the reconstruction system is easily capable of
handling the rate 4 data acquisition speed of 16 frames/
sec. The benefit of hybrid TGRAPPA image domain recon-
struction comes at the cost of an increase in the weight
calculation: 1) transform k-space domain GRAPPA
weights to the image domain, 2) calculate noise-weighted
B1 estimates, 3) combine image domain weights using B1

estimates. This added computation depends on the num-
ber of receiver coils and image resolution. With our imag-
ing parameters, the increase in the time for weight-set
calculation was measured to be 0.42 sec on data acquired
with 18 receiver coils, and 0.76 sec on data acquired with
30 receiver coils. We considered this to be reasonable for
our application given the benefit: although transforming
k-space weights to the image domain, and forming the
composite unmixing coefficients add computation to the
algorithm, a dramatic speed-up in overall reconstruction
time is achieved. More than 120 frames/sec is achieved
when reconstructing rate 4 dataset acquired with 18 re-
ceiver coils, and more than 75 frames/sec is achieved
during the reconstruction of rate 4 dataset acquired with
30 receiver coils.

Table 1 represents the performance values for HT-
GRAPPA reconstruction scheme for the weight-set calcu-
lation processes on our first dataset, where all threads for
weight-set calculation and reconstruction are sharing the
system CPUs. When reconstruction threads are disabled
the performance of weight-set calculation increased by
10%. Disabling weight-set calculation threads increased

Table 2
Reconstruction Times (in sec) for Conventional TGRAPPA and for HTGRAPPA

Rate
[2 � 3]

TGRAPPA
HTGRAPPA

[2 � 5]
TGRAPPA

HTGRAPPA

[2 � 7]
TGRAPPA

HTGRAPPA

[4 � 3]
TGRAPPA

HTGRAPPA

[4 � 5]
TGRAPPA

HTGRAPPA

2 0.360 0.008 0.520 0.008 0.730 0.008 0.630 0.008 1.140 0.008
3 0.430 0.008 0.660 0.008 0.880 0.008 0.790 0.008 1.310 0.008
4 0.480 0.008 0.750 0.008 1.060 0.008 0.880 0.008 1.480 0.008

Different acceleration (R) values and block sizes of [2 � 3], [2 � 5], [2 �7], [4 � 3], and [4 � 5] (18 acquisition coils, acquisition matrix of
192 � 108).
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the reconstruction performance by 40%. However, the re-
construction is much faster than the acquisition rate and
the reconstruction threads are idle most of the time, leav-
ing much of the system resources to the threads for weight-
set calculation.

Table 2 compares conventional TGRAPPA to HT-
GRAPPA in terms of reconstruction performance on our
first dataset. Even with acceleration rate 2 and with a
relatively small block size of [2 � 3], TGRAPPA is 45 times
slower than HTGRAPPA. As the rate increases, and the

FIG. 3. Real-time images reconstructed with HTGRAPPA in 0.016 sec with acquisition of two interleaved slices (18 acquisition coils,
acquisition matrix of 192 � 108). From left to right: long axis and short axis heart images. From top to bottom, R � 2, R � 3 and R � 4.
Darkening in the myocardium from saturation can be seen where the images intersect, since they are acquired serially.
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bigger blocks are deployed, the standard implementation
of TGRAPPA becomes too slow for use in real-time imag-
ing. At rate 4, HTGRAPPA is nearly 180� faster than
conventional TGRAPPA reconstruction, since its perfor-
mance does not depend on acceleration rate or GRAPPA
block size.

Figure 4 represents large (upper images) FOV (380 mm)
and small (lower images) FOV (320 mm) images recon-
structed with TSENSE, TGRAPPA (non-real-time) and HT-
GRAPPA (in real-time) algorithms (from left to right). Im-
age quality of HTGRAPPA is on a par with TGRAPPA and
TSENSE. Additionally, when using a small FOV, HT-
GRAPPA images do not exhibit artifacts from prefolding as
is the case for TSENSE. HTGRAPPA allows us to perform
real-time imaging using 30 coils with an acceleration rate
of 4 without sacrificing image quality.

In interventional applications, scan plane changes occur
often to keep track of invasive device positions. However,
parallel imaging algorithms require some time for adapting
to these changes, and during this transition time aliasing
cannot be removed from the images. In order to overcome
this issue, our system automatically switches to view-
sharing when a change in slice orientation is detected.
Weight-sets for the new scan plan are calculated in the
background while the images are reconstructed using
view-sharing. This way, images with reasonable quality
are obtained when waiting for the new weight-set. When
the weight-sets are calculated, our system switches back to
the HTGRAPPA algorithm, and new weight-sets are de-
ployed to continue parallel imaging. The behavior of our
system to a dynamic slice plane change is shown in Fig. 5
as a series of images reconstructed from data acquired with
acceleration rate of 4, 30 receiver coils, and an acquisition
matrix of 192 � 108. At frame 3, scan plane is dynamically

rotated by 90° during scan-time. Our system reacts to this
change by switching to view-shared reconstruction, while
the new weights are being calculated in the background.
At frame 21, reconstruction switches back to HTGRAPPA
when the new weight-sets became available. This ap-
proach makes it possible to continue parallel imaging
without interruption when scan plane change occurs.

Figure 6 shows a cardiac cine image series across a
single heart cycle acquired nontriggered with free-breath-
ing using rate 4 parallel imaging, with partial phase Fou-
rier acquisition (20 k-space lines are actually acquired per
frame), with TR � 3.06 ms. This TR value implies 3.06 �
20 � 61.20 ms acquisition time per cine image (temporal
resolution); hence, 16.34 frames/sec is achieved in real
time using these parameters. The average heart-beat of the
volunteer was �60 bps for this study. Our results show
that a fixed set of unmixing coefficients may be used across
the cardiac cycle without aliasing artifacts or temporal
blurring, as shown previously (4,5).

On our current computer hardware the weight-set cal-
culation performance dropped disproportionally when the
number of coils exceeded 31. Several tests were performed
using rate 4 datasets with acquisition matrix of 192 � 108,
block sizes of [4 � 5] and [2 � 5] and 48 ACS lines for the
weight-set calculation. The cause of the problem was re-
vealed to be greatly increased “L2 cache misses” during
the execution. Given the performance shown in Fig. 7, it is
evident that our current computer hardware is not capable
of handling more than 31 coil data in real time with rea-
sonable weight-set updating. However, this limitation did
not appreciably reduce image quality at acceleration rate 4,
and thus the system performance is sufficient for our ap-
plications. Advances in CPU technology with larger cache

FIG. 4. HTGRAPPA, TSENSE, and TGRAPPA compared. From left to right: TSENSE, TGRAPPA, HTGRAPPA reconstructed images from
data acquired with 32 acquisition coils with acquisition matrix of 192 � 108. Upper images represent large FOV (380), and lower images
represent small FOV (320). Note that artifacts from prefolding are seen with TSENSE, but not with TGRAPPA and HTGRAPPA.
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memories will improve the performance of HTGRAPPA
with more receiver coils.

A significant benefit of TGRAPPA is the tolerance to
prefolding within the prescribed FOV of the autocalibra-
tion data. Furthermore, acceleration rate and block size
independent reconstruction scheme provide better image
quality with faster reconstruction rates. The flexible gen-
eral purpose software implementation using parallel
threads permits the scaling of the number of CPUs to

readily tradeoff cost and speed. Our approach can also be
implemented using low cost graphics cards (GPUs), as was
done in Ref. (16) for the SENSE algorithm.

CONCLUSION

A parallelized hybrid TGRAPPA implementation for low
latency, real-time interventional applications was devel-
oped and demonstrated. For improved reconstruction

FIG. 5. Series of images (reconstructed from data acquired with R � 4, Nc � 30, acquisition matrix of 192 � 108) showing the response
of our reconstruction system to dynamic scan plane change. At frame 3 the scan plan was changed perpendicularly. Our system switched
to view-sharing reconstruction while the new weight-sets were being calculated. At frame 21 reconstruction switched back to HTGRAPPA
when the weight-sets were ready to use.

FIG. 6. Cardiac cine image series reconstructed from rate 4 dataset in real-time using HTGRAPPA.
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speeds, k-space domain convolution type operations are con-
verted to pixel-wise multiplication in the image domain after
proper transformation. This improvement essentially pro-
vides a constant reconstruction speed for a given acceleration
rate and block size. Our implementation can keep pace with
acquisition rates up to R � 8, which was not previously
possible to achieve using conventional TGRAPPA recon-
struction in our tests. This approach requires additional steps
to the calculation of the weight-sets; however, the weight-sets
are calculated in the background, asynchronous to image
reconstruction. Also, we can respond to interactive changes
in slice plane by first producing view-shared images, then
resuming HTGRAPPA once new weight-sets have been cal-
culated. This method allows use of the TGRAPPA algorithm
for interactive real-time MRI with very low latency. On cur-
rent computer hardware, our system permits reconstructions
at up to 120 frames/sec, even with high acceleration
rates, and up to 31 receiver coils. With more CPUs,
weight-set calculation will become even faster with in-
creased number of threads dedicated to this calculation.
As a result, better adaptation to the coil sensitivity
changes can be achieved.
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FIG. 7. Performance plots of HT-
GRAPPA for weight-set calcula-
tion and reconstruction with dif-
ferent number of acquisition coils
(acquisition matrix of 192 � 108,
acceleration rate of 4). a: Weight-
set calculation performances in
seconds with block sizes of [2 �
5] and [4 � 5]. b: Reconstruction
performances in seconds.
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