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RT-GROG: Parallelized Self-Calibrating GROG

for Real-Time MRI
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Cengizhan Ozturk,? Robert ]. Lederman,' and Nicole Seiberlich®

A real-time implementation of self-calibrating Generalized
Autocalibrating Partially Parallel Acquisitions (GRAPPA) oper-
ator gridding for radial acquisitions is presented. Self-calibrat-
ing GRAPPA operator gridding is a parallel-imaging-based,
parameter-free gridding algorithm, where coil sensitivity pro-
files are used to calculate gridding weights. Self-calibrating
GRAPPA operator gridding’s weight-set calculation and image
reconstruction steps are decoupled into two distinct proc-
esses, implemented in C++ and parallelized. This decoupling
allows the weights to be updated adaptively in the back-
ground while image reconstruction threads use the most
recent gridding weights to grid and reconstruct images. All
possible combinations of two-dimensional gridding weights
GGy are evaluated for m,n = {-0.5, —0.4, ..., 0, 0.1, .., 0.5}
and stored in a look-up table. Consequently, the per-sample
two-dimensional weights calculation during gridding is elimi-
nated from the reconstruction process and replaced by a sim-
ple look-up table access. In practice, up to 34x faster
reconstruction than conventional (parallelized) self-calibrating
GRAPPA operator gridding is achieved. On a 32-coil dataset
of size 128 x 64, reconstruction performance is 14.5 frames
per second (fps), while the data acquisition is 6.6 fps. Magn
Reson Med 64:306-312, 2010. ©2010 Wiley-Liss, Inc.
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Even though non-Cartesian trajectories have been shown
to be beneficial in some clinical applications for acquir-
ing MR data (1-3), Cartesian trajectories have gained
more widespread use in the clinic as the image recon-
struction process is less demanding in terms of computa-
tion and execution time. Typically, non-Cartesian data
are mapped onto a Cartesian grid, a process known as
gridding, prior to image reconstruction. Several methods
have been proposed to perform the gridding, such as
convolution gridding (4), Uniform Resampling/Block
Uniform Resampling (URS/BURS) (5,6), and some itera-
tive methods such as Iterative Next-Neighbor Regridding
(INNG) (7) and Deconvolution-Interpolation Gridding
(DING) (8). All these methods are computationally
demanding and the reconstruction quality depends on
several different parameters.
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GRAPPA operator gridding (GROG) (9,10) is a gridd-
ing algorithm that uses coil sensitivity profiles to calcu-
late k-space shifting weights in the k, and k; directions
to shift non-Cartesian samples to their corresponding
Cartesian grid locations. In GROG, density compensa-
tion is straightforward. If more than one non-Cartesian
sample is mapped to the same Cartesian grid location,
averaging is performed to calculate final Cartesian sam-
ple value. GROG algorithm requires an additional Carte-
sian dataset to use as a calibration data to calculate the
weights, as in GRAPPA (11). A self-calibrating version
of GROG (SC-GROG) is presented by Seiberlich et al.
(12). SC-GROG uses the non-Cartesian data points them-
selves as a calibration dataset and provides a parameter-
free, parallel-imaging-based, robust, self-calibrating,
gridding algorithm that can be applied to grid both
undersampled and fully sampled datasets. The quality
of (SC)-GROG images is on par with conventional gridd-
ing (10,12).

In this work, we present the first real-time (RT)
implementation of the SC-GROG algorithm for radial
acquisitions. SC-GROG’s weight-set calculation and
image reconstruction steps are decoupled into two sepa-
rate processes, modified for better performance, and
then parallelized for a generic purpose architecture.
Decoupling makes it possible to continuously update
the k. and k, weights for each slice in the background,
while the reconstruction threads use the most recent
weights for gridding, as done by Guttman et al. (13)
and Saybasili et al. (14). Additionally, per-sample two-
dimensional (2D) shifting weights G}'G} that are nor-
mally calculated during gridding are evaluated for all
possible “non-Cartesian to Cartesian” distance combina-
tions in x and y directions (m,n = {-0.5, —0.4, ..., 0,
0.1, ..., 0.5}). The results are stored in a look-up table
(LUT) by the weight calculation process. In this way,
the per-sample 2D weight calculation is replaced by a
simple LUT access, providing increased reconstruction
performance.

MATERIALS AND METHODS
Basic Algorithm

SC-GROG uses a (N; x N;) weight-set to perform gridd-
ing, where N, represents number of receiver coils used
during the acquisition. Let G; designate unitary weight
set (for unitary shifts in k-space, Ak) in one dimen-
sion. The weights for smaller shifts can be calculated
by:

Gm = (G1)™ 1]
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FIG. 1. GROG gridding for two samples Sy and S, of a projection
P; is represented. Gridding weights G, and G, are applied to the
samples Sy and S, according to k, and k, distances to their clos-
est Cartesian grid neighbors S§ and S§, and their contributions to
these Cartesian grid points are calculated by S§ = G{''G}' Sy
and S5 = Gy*G}2S,.

where —1 < m < 1. Gridding of a 2D k-space sample
s(ky, ky) can be generalized using the properties of the
GRAPPA operator (9):

s(ky + 8%, ky +8y) = (Go)™(Gy) ™ s(ky, ky) [2]

where 3x and dy is the distance of this non-Cartesian sam-
ple to its nearest Cartesian grid location in the k, and k,
direction, G and Gy are the unitary weights in the k, and
k, directions, and finally s(k. + 8x, ky+ 8y) represents the
gridded signal at the Cartesian location (k + 8x, k;, + 3y).
A schematic of this operation is shown in Fig. 1. If multi-
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ple non-Cartesian samples are mapped to the same Carte-
sian location, the results are averaged. Therefore, no
density compensation function is required.

Calculation of Gy and Gy is not straightforward. First, an
angular weight-set Gp, must be calculated for each projec-
tion (i = 1,..., N, where N, is the number of projections). Gy
represents the unitary shift operator of size (N, x N along
the given radial ray: s(0, r + 1) = G0 s(6, r). Therefore,

Gy = pinv(s(0,r)]s(6,r + 1) [3]

where pinv represents the pseudoinverse operator and
s(0, r) represents multicoil data of projection 0 at posi-
tion r. The set of angular weights can be decoupled into
two distinct shifting weights in the k, and k, directions.
This operation is performed by noticing that G6 = (GJ)™
(Gy)", where m and n represent the shifts in the k, and
k, directions between each consecutive sample along
given projection:

Go, = GG

Go, = G™G™
g (4]

Goy, = Gx "Gy,

Np
Equation 4 can be linearized by taking the matrix loga-
rithm of each side:

In(Gor) = my In(Gy) + ny In(Gy)

In(Gyz) = my In(Gy) + nz In(Gy) 5]

In(Gen,) = mpp In(Gx) + nyp In(Gy).

After linearization, Eq. 5 can be reorganized as a matrix
equation and solved for In(Gy) and In(G). Subsequently,
Gy (and Gy) is calculated by taking the matrix exponen-
tials, Gy = exp(In(Gy)) (and Gy = exp(In(G,)), respectively).

Implementation

RT-GROG has been implemented in C++ and parallel-
ized using Pthreads and OpenMP libraries. The weight-
set calculation and reconstruction processes are de-
coupled to be executed asynchronously in parallel. A
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FIG. 2. Block diagram of RT-GROG is represented. Dotted rectangles represent asynchronously executed parallel regions (upper dotted
rectangle: weights calculation process; lower dotted rectangle: reconstruction process).
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FIG. 3. RT-GROG reconstructed images are presented. Upper images represent phantom images reconstructed from a 15-coil dataset
with (@) 256 projections, (b) 128 projections, and (c) 64 projections (256 samples on each). Lower image: (d) cardiac cine image series
reconstructed in real time using a 32-coil dataset (64 projections, 128 samples). Acquisition time: 151 ms. Reconstruction time: 69 ms.

separate C++ class is dedicated to weights calculation
(GrogWsCalculator) and image reconstruction (GrogRe-
gridder) processes. For simple usage, another C++ class
Grog that encapsulates weights calculation and image
reconstruction objects is provided. When an instance of
Grog is created, weights calculation and image recon-
struction object instances are automatically created, and
all threads are initiated. Raw data from acquired frames
are fed to the instance of Grog, and a reconstructed
image is obtained as the output of a method, recon().

The weight-set calculation thread continuously updates
the weights in the background to track changes in the coil
sensitivities, while the reconstruction threads grid non-
Cartesian samples using the latest weights and reconstruct
images in real time. A total of N, reconstruction threads
are initially created by the Pthreads library, and the same
threads with the same allocated memory variables are
used during the whole execution to prevent continuous
context switching and thus to avoid performance penalty.
The weight-set calculation process uses the OpenMP
library to allow dynamic change of the number of threads
devoted to the weight-set calculation. The number of
threads used for the weight-set calculation may be
decreased dynamically after an initial set of weights,
thereby devoting more resources to image reconstruction.

A block diagram of the RT-GROG implementation is
shown in Fig. 2. The upper dotted rectangle describes
the weights calculation process, and the lower rectangle
represents the reconstruction process. Every acquired
frame is fed to the integration window of the weights
calculation process to obtain the calibration dataset. Fol-

lowing the calculation of local shifting weights Gy, Gy
and G, are determined. Subsequently, the LUT is com-
puted. The reconstruction process uses most recent LUT
to perform gridding. The final image is obtained by com-
bining per-coil images using sum of squares.

RT-GROG was computed in parallel using eight dual-
core AMD Opteron 8220 processor (2.8 GHz) on Linux-
2.6.16.46-0.12-smp. Pseudoinverse operations and calcu-
lation of the eigenvectors were realized using the AMD
Core Math Library (http://developer.amd.com/acml). For
the matrix operations, the ATLAS library is used (http://
math-atlas.sourceforge.net). The FFTW library (http://
fftw.org) was used for fast Fourier transformations. The
code was compiled on GCC (http://gcc.gnu.org), version
4.2.2. Matrix power, matrix logarithm, and matrix expo-
nential operations were implemented assuming that G,,
Gy are diagonalizable matrices. Let M be a diagonalizable
square matrix and V a matrix of eigenvectors of M. M
can be projected into another space where its projection
M’ will be a diagonal matrix:

M =V MV. 6]
Thus,
In(M) = ViIn(M") V!
exp(M) = Vexp(M') V™ 7]
M" = VM)V
As M’ is a diagonal matrix, the calculations in Eq. 7

are realized by replacing every number on the diagonal
of M’ by its logarithm, its exponential, and its power,
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FIG. 4. Image reconstruction and weight-set calculation performances in seconds for 12-coil phantom data and different numbers of

projections (number of samples = 256).

respectively. All projections are used to calculate G, and
Gy to achieve the best accuracy. We assume a step size
of 0.1 (or 1/10 of unit in k-space) for distance measure-
ments between a non-Cartesian sample and its closest
Cartesian grid neighbor. For example, the distance of
0.123 is rounded to 0.1, while 0.167 is rounded to 0.2.
This assumption makes it possible to precalculate all
possible combinations of per-sample 2D weights
(GJ™(Gy)" for m, n = {—0.5, —0.4,..., 0, 0.1,..., 0.5} and to
store them in a LUT G,, by the weight-set calculation
thread. In this way, Eq. 2 is simplified to

s(ky + 8%, ky + 8y) = Gy (3x,8y) s(ky, ky) 8]

that eliminates per-sample (GX)S"(Gy)Sy operations during
the gridding. Reconstruction threads only calculate the
distance (3x,3y) of each sample to its closest Cartesian grid
neighbor and retrieve the appropriate precalculated 2D
weight set from LUT. Consequently, reconstruction per-
formance is greatly improved.

Data Acquisition

For validation, several phantom datasets were acquired
using a short, wide-bore Siemens Magnetom Espree 1.5 T
(Siemens Medical Solutions, Erlangen, Germany). The
sequence was 2D radial True Fast Imaging with Steady
State Precession (TrueFisp) with flip angle 45°, pulse repe-
tition time 3.76 ms, field of view 340 mm. A total of six to
15 receiver coils were used to acquire 50-400 projections
with 256 samples. Images were reconstructed in real time
and results were analyzed in terms of performance and
image quality.

Following in vitro validation, several real-time cardiac
images of a healthy subject were acquired using a Siemens
Magnetom Avanto 1.5 T (Siemens Medical Solutions),
using the same sequence with fewer projections (64 and
96) and fewer samples (128 and 192), using 32 receiver
coils (Invivo Corporation, Orlando, FL). The human sub-
ject protocol (NCT00720460) was approved by the NHLBI
Institutional Review Board. All subjects consented to par-
ticipate in writing. The pulse repetition time was 2.36 ms
for 128 sample acquisitions and 2.86 ms for 192 sample
acquisitions.

RESULTS
Image Quality

Phantom images were reconstructed using 6-15 coils
datasets with 50—400 projections. Figure 3a-c represents
images reconstructed from data acquired with 15 coils
with N, = 256, 128, 64, from left to right.

Free-breathing, nongated, short-axis, cardiac data were
acquired with 32 coils (192 x 96, 128 x 64, and 192 x
64). Figure 3d represents real-time reconstructed cine
images of a beating heart from a 32-coil dataset on a
short axis (64 projections, 128 samples). These images
show that a fixed set of SC-GROG weights may be used
to grid multiple consecutive acquisitions.

Performance

The performances of the image reconstruction and
weight-set calculation (in seconds) on 12-coil phantom
data with different numbers of projections are repre-
sented in Fig. 4. With a 32-coil cardiac dataset, the
reconstruction was up to three times faster than data ac-
quisition. For acquisitions of 128 x 96 (192 x 96, 128 x
64, respectively), the reconstruction rate was 13.2 fps
(10.0 fps and 14.5 fps respectively), while the data acqui-
sition rate was 4.4 fps (3.6 fps and 6.6 fps, respectively).

DISCUSSION

When reconstructing images from a 12-coil phantom
dataset with RT-GROG, image reconstruction speed was
between 52 and 83 ms (12.0 and 19.2 fps), while the
data acquisition was between 188 and 1504 ms (0.6 and
5 fps). Reconstruction speeds of 69-101 ms (10.0-14.5
fps) were achieved with a 32-coil cardiac dataset, while
the data acquisition speeds were 151-274 ms (3.6—6.6
fps). The weight-set update speeds were between 321
and 2431 ms for the phantom dataset and 294 and 646
ms for the cardiac dataset. RT-GROG reconstruction was
faster than the data acquisition, even with smaller matrix
sizes, such as 128 x 32 (18 fps reconstruction, 13 fps ac-
quisition). However, because SC-GROG does not fill up
subsampled k-space data, reconstructed images suffered
in terms of quality. View sharing could be used, but it is
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FIG. 5. The effects of different step sizes on image quality and computation times are represented. 15-coil phantom data with 256 pro-
jections (256 samples) are reconstructed using full-precision SC-GROG as a reference image (leftmost image). Subsequently, the same
frame is reconstructed using different step sizes, and the difference images are calculated to compute root-mean-square-error values

for each case.

not preferred because it introduces blurring due to
motion. Further improved image quality on under-
sampled datasets may be obtained by using receiver coil
sensitivity profiles to estimate missing non-Cartesian
data samples prior or subsequent to gridding (15,16).

MR image reconstruction implicitly assumes that sig-
nal encoding employs perfectly linear gradients. In prac-
tice, gradient nonlinearities, spatially varying inhomoge-
neities, and time-varying eddy currents cause deviations
from this ideal. Furthermore, MR gradient coils have in-
dependent errors and delays that can cause deviations
from the expected k-space trajectory. In general, it is
quite difficult to be certain of the particular k-space loca-
tion for a sample and ascribe a unique value for it. Prior
experience with non-Cartesian MR reconstruction sug-
gests that the k-space location must be provided with
significantly better precision than one k-space sample,
but there is little to be gained by using full precision.
The effect of different step sizes/precisions on image
quality and performance is represented in Fig. 5. The
full precision reference image of a phantom is recon-
structed using conventional SC-GROG. Subsequently, the
same frame is reconstructed using RT-GROG with differ-
ent step sizes, and root-mean-square-error values are cal-
culated for each case. The full precision image recon-
struction is 39 times slower than RT-GROG

reconstruction. In theory, changes in the step size should
not affect RT-GROG reconstruction performance as only
one LUT access per sample is required. However, with
small step sizes, the weights calculation process uses
shared system resources more aggressively and conse-
quently slows down the reconstruction. Let t be the LUT
computation time for a given step size s. Increasing the
precision by n implies n* times bigger LUT; thus, theo-
retically LUT computation time increases to n*t. In prac-
tice, the overall slowdown in LUT calculations with
increased precisions is more than the theoretical values
due to increased system overload. Our results indicate
that a step size of 0.1 provides the best compromise
between image quality and computational efficiency on
our current hardware: reconstruction performance stabil-
izes (~0.100 sec for step sizes >0.1), and reconstructed
images are virtually identical to full precision images
with a step size of 0.1. Additionally, LUT computation
time is negligible (22 ms) when compared to SC-GROG
weights calculation time (2.390 sec). On a 32-coil dataset
of size 128 x 64, SC-GROG weights are calculated in 294
ms, LUT with a step size of 0.1 is computed in 70 ms,
and LUT with a step size of 0.05 in 285 ms. To further
investigate our step size choice, frames were recon-
structed using conventional SC-GROG (with full preci-
sion) and the discretized LUT version with a step size of
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Table 1

Reconstruction Performance Comparison (in Seconds) Between
Conventional Parallelized SC-GROG and RT-GROG on 32-Coill
Datasets

Matrix size
128 x 64 128 x 96 192 x 64 192 x 96
SC-GROG 1.412 1.972 2.285 3.4525
RT-GROG 0.069 0.076 0.101 0.123

0.1. The signal difference between these images was less
than 40% of the SD of the noise of the full precision
image, supporting the assertion that artifacts from using
a step size of 0.1 are below the noise floor and essen-
tially negligible. Please note that smaller step sizes
should be preferred on faster computer hardware to
improve image quality.

Reconstruction  performance comparison between
conventional SC-GROG and RT-GROG is given in Table
1. Thirty-four-fold performance increase is observed
with RT-GROG for the reconstruction of 32-coil, 192 x
96 data over conventional, parallelized SC-GROG. A
substantial comparison of the (SC-)JGROG and conven-
tional gridding approaches for non-Cartesian MRI
reconstruction is given in the journal papers on GROG
(10,12). With the GROG algorithm, gridding of a non-
Cartesian sample requires N, weighting coefficients.
Convolution gridding uses a 2D kernel with variable
size, MxN. Therefore, GROG is computationally more
efficient than convolution gridding for N, < MxN. If
N, > MxN, the convolution gridding method will map
the non-Cartesian samples onto a Cartesian grid faster
than GROG. However, considering the additional calcu-
lations required by convolution gridding (e.g., nontri-
vial density compensation with some trajectories), we
believe that GROG’s reconstruction performance will
be better than (or at least on par with) a convolution
gridding method in a clinical environment where the
number of receiver coils is generally around eight to
12. Parameter-free reconstruction is beneficial in the
clinic as it eliminates imaging errors due to parameter-
ization. Therefore, RT-GROG should be preferable over
conventional gridding even if it falls behind in terms
of performance when high numbers of receiver coils
are used.

LUT computation increased the weights calculation
time by 70 ms (on average) on a 32-coil cardiac dataset.
Considering the reconstruction performance gain (up to
34x on a cardiac dataset) and the fact that one fixed set
of SC-GROG coefficients can grid multiple consecutive
acquisitions, this additional 70 ms is considered to be
reasonable.

Our results emphasize 32-coil acquisitions on a 16-
core workstation. It may be difficult to provide such a
workstation on a basic clinical environment. However,
8- to 12-coil acquisitions provide decent image quality,
imply faster reconstruction performance, and can be
reconstructed in real time on a modern quad-core
workstation. If implemented on a Graphics Processing
Unit (GPU), implementation costs may be further
decreased. Scanner manufacturers are now providing
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multicore reconstruction computers. Thus, we believe
that RT-GROG can be employed for clinical purposes
with minimum effort. Additionally, OpenMP parallel-
ism of the weight-set calculation thread may permit
real-time synchronous SC-GROG reconstruction (a new
set of weights per acquisition without delays) if enough
system resources are dedicated to the weight-set calcu-
lation process. Our implementation can also be applied
to constant-angular-velocity and reordered constant-lin-
ear-velocity spiral trajectories (12).

CONCLUSION

Highly parallel low latency real-time SC-GROG imple-
mentation for radial acquisitions was developed and
demonstrated. The weight-set calculation for SC-GROG
and the image reconstruction steps are separated into
two individual processes and implemented in parallel to
run asynchronously in real time on a general-purpose
architecture. Following the calculation of the two one-
dimensional gridding weights G, and G, all possible
combinations of per-sample 2D weights (GJ)™ (Gy)" are
precalculated for m, n = {-0.5, —0.4,... 0, 0.1,... 0.5} and
stored in a LUT by the weight-set calculation process.
Consequently, the per-sample 2D weight calculation dur-
ing gridding is eliminated from the reconstruction pro-
cess and replaced by a simple LUT access. In this way,
reconstruction performance is improved to better suit
real-time requirements. RT-GROG is autocalibrated, pa-
rameter free, and highly parallel to overcome slice-plane
changes during real-time MRI. It is possible to dynami-
cally change the number of threads associated to weights
calculation for improved autoadaptation. Up to 34-fold
reconstruction performance increase is obtained over
conventional SC-GROG when reconstructing a 32-coil
dataset.

ACKNOWLEDGMENT

The authors are grateful to our clinical research coordi-
nator Annette Stine, RN. This work is supported by the
Division of Intramural Research, National Heart, Lung
and Blood Institute, National Institutes of Health, USA,
Z01-HL005062-07 (RJL). NHLBI and Siemens Medical
Systems have a Cooperative Research and Development
Agreement that includes real-time MRI scan control and
display.

REFERENCES

1. Glover GH, Pauly JM. Projection reconstruction techniques for reduc-
tion of motion effects in MRI. Magn Reson Med 1992;28:275-289.

2. Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary
artery imaging. Magn Reson Med 1992;28:202—-213.

3. Pipe JG. Motion correction with PROPELLER MRI: application to
head motion and free-breathing cardiac imaging. Magn Reson Med
1999;42:963-969.

4. Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a
convolution function for Fourier inversion using gridding (computer-
ised tomography application). IEEE Trans Med Imaging 1991;10:
473-478.

5. Rosenfeld D. An optimal and efficient new gridding algorithm
using singular value decomposition. Magn Reson Med 1998;40:14—
23.

6. Rosenfeld D. New approach to gridding using regularization and esti-
mation theory. Magn Reson Med 2002;48:193-202.



312

7.

10.

11.

Moriguchi H, Duerk JL. Iterative next-neighbor regridding (INNG):
improved reconstruction from nonuniformly sampled k-space data using
rescaled matrices. Magn Reson Med 2004;51:343— 352.

. Gabr RE, Aksit P, Bottomley PA, Youssef ABM, Kadah YM. Deconvo-

lution-interpolation gridding (DING): accurate reconstruction for arbi-
trary k-space trajectories. Magn Reson Med 2006;56:1182—1191.

. Griswold MA, Blaimer M, Breuer F, Heidemann RM, Mueller M,

Jakob PM. Parallel magnetic resonance imaging using the GRAPPA
operator formalism. Magn Reson Med 2005;54:1553—1556.

Seiberlich N, Breuer FA, Blaimer M, Barkauskas K, Jakob PM,
Griswold MA. Non-Cartesian data reconstruction using GRAPPA
operator gridding (GROG). Magn Reson Med 2007;58:1257—
1265.

Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang

K, Kiefer B, Haase A. Generalized autocalibrating partially parallel
acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210.

12.

13.

14.

15.

16.

Saybasili et al.

Seiberlich N, Breuer F, Blaimer M, Jakob P, Griswold M. Self-cali-
brating GRAPPA operator gridding for radial and spiral trajectories.
Magn Reson Med 2008;59:930-935.

Guttman MA, Kellman P, Dick AJ, Lederman RJ, McVeigh ER. Real-
time accelerated interactive MRI with adaptive TSENSE and
UNFOLD. Magn Reson Med 2003;50:315-321.

Saybasili H, Kellman P, Griswold MA, Derbyshire JA, Guttman MA.
HTGRAPPA: real-time Bil-weighted image domain TGRAPPA
reconstruction. Magn Reson Med 2009;61:1425-1433.

Seiberlich N, Breuer F, Heidemann R, Blaimer M, Griswold M, Jakob
P. Reconstruction of undersampled non-Cartesian datasets using
pseudo-Cartesian GRAPPA in conjunction with GROG. Magn Reson
Med 2008;59:1127-1137.

Seiberlich N, Breuer FA, Ehses P, Moriguchi H, Blaimer M, Jakob
PM, Griswold MA. Using the GRAPPA operator and the generalized
sampling theorem to reconstruct undersampled non-Cartesian data.
Magn Reson Med 2009;61:705-715.



