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Diffusion-weighted MRI studies generally lose signal intensity
to physiological motion, which can adversely affect quantifi-
cation/diagnosis. Averaging over multiple repetitions, often
used to improve image quality, does not eliminate the signal
loss. In this article, PCATMIP, a combined principal compo-
nent analysis and temporal maximum intensity projection
approach, is developed to address this problem. Data are first
acquired for a fixed number of repetitions. Assuming that
physiological fluctuations of image intensities locally are likely
temporally correlated unlike random noise, a local moving box-
car in the spatial domain is used to reconstruct low-noise
images by considering the most relevant principal components
in the temporal domain. Subsequently, a temporal maximum in-
tensity projection yields a high signal-intensity image. Numeri-
cal and experimental studies were performed for validation and
to determine optimal parameters for increasing signal intensity
and minimizing noise. Subsequently, a combined principal
component analysis and temporal maximum intensity projec-
tion approach was used to analyze diffusion-weighted porcine
liver MRI scans. In these scans, the variability of apparent dif-
fusion coefficient values among repeated measurements was
reduced by 59% relative to averaging, and there was an
increase in the signal intensity with higher intensity differences
observed at higher b-values. In summary, a combined principal
component analysis and temporal maximum intensity projec-
tion approach is a postprocessing approach that corrects for
bulk motion-induced signal loss and improves apparent diffu-
sion coefficient measurement reproducibility. Magn Reson
Med 65:1611–1619, 2011. VC 2010 Wiley-Liss, Inc.
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Diffusion-weighted MRI (DWI) studies generally lose sig-
nal intensity (SI) to physiological motion, which can
adversely affect quantification and diagnosis. Averaging
over multiple repetitions, often used to improve image
quality, does not eliminate the signal loss. In DWI, phys-
iological movement of anatomical features can be cor-
rected for with nonrigid-body registration software pack-
ages (1–3). However, bulk motion also causes phase
shifts and phase dispersion in image voxels, which never
repeat precisely, leading to fluctuating intensity losses
(4–6). The intensity fluctuations are smoothed out when

averaging approaches are used; hence, although an
increased signal-to-noise ratio is achieved, the local SI is
dampened. This gets trickier at higher b-values where
the motion sensitivity of the pulse sequence is particu-
larly high, resulting in erroneous diffusivity values and
potentially incorrect clinical diagnosis.

Principal component analysis (PCA) is a mathemati-
cal approach that helps reduce the dimensionality of
the data by expressing it as a linear combination of its
basis vectors (7). The first principal component
accounts for a large percentage of the variability in the
data, and each succeeding component accounts for as
much of the remaining variability as possible. Typi-
cally, one to two principal components are sufficient to
characterize an entire dataset (7). Although the utility
of PCA for MR imaging has been discussed as early as
1987 (8), its primary usefulness over the last decade has
been for isolating activation signals in functional MRI
(9–12). Although most of these methods have been
global in implementation over the entire set of images,
localized approaches have been presented (12) for
voxel-by-voxel analysis.

One of the first non-neurological implementations of
PCA in MRI was by Wedeen et al. (13) who used it to
quantitatively characterize cardiac mechanical synchrony
from a time series of myocardial strain rates. Lately, PCA
has been used in MRI for improving image contrast for
segmentation purpose (14), analyzing diffusion tensor
data (15), and for dynamic contrast-enhanced MRI stud-
ies (16,17).

Temporal maximum intensity projections (TMIPs) are
performed by obtaining maximum intensity projections
in the time domain for each pixel in the image space.
One of the first uses of TMIP for MRI analysis was by
Breeuwer et al. (18) who used TMIP to aid in drawing
myocardial boundaries for registering perfusion data.
Cebral et al. (19) used TMIP for developing volumetric
magnitude images by taking maximum intensity of each
voxel during the cardiac cycle.

The basic idea of a combined principal component
analysis and temporal maximum intensity projection
approach (PCATMIP) is that when the same DWI acquisi-
tion is repeated over time, the signal at each pixel fluctu-
ates because of several factors. First is the physical move-
ment of the anatomical features due to physiological
motion. This can be effectively corrected for with nonrigid-
body image registration (1–3). However, intensity fluctua-
tion still exists because of two other factors: bulk motion-
induced intensity drops and random noise. We need to
reduce or remove the random noise so as to be able to pick
out the maximum signal and regard it as the one with mini-
mum motion-induced loss. For this, we exploit the fact that
physiological motion is mostly cardiac and respiratory,
which is mechanically transmitted to other areas. Although
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some organs have active peristaltic motion, these are slow
and temporally coordinated in nature. Therefore, motion-
induced signal fluctuations in neighboring pixels are tem-
porally correlated, whereas random noises are not.

With this in mind, we look at a neighborhood defined
by a boxcar and determine through PCA how many inde-
pendent temporal behaviors (modes) are present. We
then determine how many of these have amplitudes that
exceed the random noise threshold and therefore repre-
sent real physiological fluctuations. If we include only
these modes in reconstructing the signals in the boxcar,
random noise will be reduced. In the case where only one
significant mode exists in a boxcar, the procedure is
equivalent to taking the temporal fluctuation of the aver-
age signal in the boxcar as the motion behavior. However,
as will be shown below, more than one type of motion
may exist in a boxcar. A further consideration is that the
size of the boxcar needs to be large enough to distinguish
coordinated physiological effects from random noise,
while small enough to capture local pattern of motion-
induced fluctuation. The mathematical formulation and
optimization of this approach is detailed below.

PCATMIP Procedure

We first acquire a set of 2D raw images I (x, y, m), where
m ¼ 0,1,. . ..N � 1 is the number of repetitions of the 2D
acquisition. For a localized operation, the set of images
can be divided into subregions or boxcars, Ibc(a, b, m),
where 0 < a � 23 and 0 < b � 23. The Hermitian matrix
is calculated over the boxcar

H m;nð Þ ¼
ZZ

I�bc a;b;mð Þ Ibc a;b;nð Þdadb: ½1�

Diagonalizing the Hermitian yields the eigenvalues ej
and eigenvectors Vj(m) such thatX

m

V�
i mð ÞVj mð Þ ¼ dij ; ½2�

where dij is the Kronecker delta. Using these eigenvec-
tors, the principal components Pj(a, b) are calculated
over the subregion:

Pj a; bð Þ ¼
X
m

I a;b;mð Þ V�
j mð Þ ½3�

such that ZZ
Pi a; bð ÞPjða;bÞ da db ¼ dijei: ½4�

Using a limited number f of principal components
(determined by thresholding above noise floor detailed
below, typically f ¼ 1 or 2), the new image is calculated
for the subregion as:

I 0 a; b;mð Þ ¼
Xf�1

k¼0

Pk a;bð Þ Vk mð Þ: ½5�

The pixels surrounding the pixel being interrogated
are weighted to enable edge-preserving processing. If the

center pixel of the boxcar is (xc, yc), then for any pixel
(x, y) within the boxcar, the weighting is given by:

w x; y xc; ycjð Þ ¼ C 1� a
r2

for r 6¼ 0ð Þ
a for r ¼ 0ð Þ

(
; ½6�

where C is a normalization factor, a [ [0, 1] (typically
greater than 0.75), and r is the distance between pixels
(xc, yc) and (x, y). For each pixel (x, y) in the image, the
final intensity is determined by:

I 00 x; y ;mð Þ ¼

P
all xc ;ycð Þwithin

w x; y xc; ycjð Þ I 0 x; y;m xc; ycjð Þ
P

all xc;ycð Þ within box

w x; y xc; ycjð Þ ½7�

Subsequently, a pixel-wise TMIP operation yields the
final image Q(x, y):

Q x; yð Þ ¼ MAX
N�1

m¼0
I 00 x; y;mð Þð Þ: ½8�

Determining the Number of Principal
Components to Select

In any subregion, the number of principal components to
be used can be determined by accepting the eigenvalues
eI that are greater than the noise threshold:

eI > b eh iN�a; ½9�

where b is the threshold multiplier for the eigenvalues
determined in simulation and imaging experiments as
detailed below, h i implies averaging, and a is the number
of eigenvalues that have been selected to be accepted.

SIMULATIONS AND EXPERIMENTS

Numerical Simulations

If one assumes that there are at most two independent
temporal patterns in a boxcar, then for a given signal-to-
noise ratio (SNR) of raw data, a pair of questions arise:
(a) How large should the boxcar be to minimize RMS
errors, and (b) For what value of the threshold multi-
plier, b, will the correct number of principal components
get chosen?

To validate PCATMIP and to answer these questions,
we have used two different numerical phantoms (imple-
mented with SNR of 5, unless noted otherwise), as
shown in Fig. 1:

a. A uniform SI phantom with added-in fluctuation.
b. A phantom with two nonoverlapping zones with the

intensities of the two zones fluctuating independently.

The uniform phantom evaluated the selection of one
principal component, whereas the phantom with two
nonoverlapping zones evaluated the selection of two
principal components. Experimentally acquired porcine
liver diffusion data were used to generate the SI fluctua-
tion. Regions-of-interest were drawn on the liver and ad-
jacent organ on motion-registered images, and the average
signal in these ROIs over the 10 repetitions was used. For
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the uniform SI phantom (i.e., liver ROI), the relative level
of fluctuation was 15.4%, whereas for the two nonover-
lapping zones, the levels were 14 and 11%. The uniform
phantom with zero SI was used to determine the optimal
range for b, the noise threshold multiplier. Subsequently,
PCATMIP processing is performed on the entire image
using the optimal boxcar size for the sliding window
implementation to evaluate SNR variation.

For determining the effectiveness of the PCATMIP
approach, the following error measures were used:

i. Root-mean-squared-error (RMSEI) of the processed
image intensities of all repetitions

RMSEI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y ;t

I 0s x; y ; tð Þ � I x; y; tð Þ� �2
Sb � Sb �Nt

" #vuut ½10�

ii. Root-mean-squared-error (RMSEp) of the maximum
intensity

RMSEp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y

Q0
s x; yð Þ � Q x; yð Þ� �2

Sb � Sb

" #vuut ½11�

For all the scenarios, the phantom was 128 � 128 pix-
els, and 10 images with intensity fluctuations were gen-
erated (Nt ¼ 10). A range of square boxcar sizes (Sb,min ¼
5 and Sb,max ¼ 23, in steps of 2) were implemented to

evaluate the PCATMIP approach and to determine opti-
mal boxcar sizes. Two different random noise variants
were considered: (a) normally distributed and (b)
Rician noise. As Rician noise introduces amplitude off-
set to the data, the thresholds for accepting eigenvalues
will be different for Rician and normally distributed
data. However, most clinical MRI studies yield absolute
data (rather than complex data), for which the noise is
Rician in nature, and hence, the subsequent analysis
only considers this noise form. For scenarios where
complex data (i.e., real and imaginary components) can
be recovered (20) or is available for the DICOM-format
DWI images, the analysis for normally distributed noise
is presented in the Appendix.

The Rician-distributed noisy intensity images were
generated as:

I 0 x; y ; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2r x; y ; tð Þ þ I2i x; y ; tð Þ

q
½12�

wherein

Ir x; y ; tð Þ ¼ I x; y ; tð Þ þ G1 sð Þ
Ii x; y ; tð Þ ¼ G2 sð Þ

and G(r) is Gaussian noise with zero mean and standard
deviation, r:

s ¼ Iðx; y ; tÞ
SNR

x; y 2 0; Sb;max

� �
: ½13�

FIG. 1. a: Ten repetitions of uniform (top) and two zones (bottom) fluctuating numerical phantoms with Rician noise added in. b: The
root-mean-squared error (RMSE) of the PCA-filtered signal at all time points relative to the true signal. c: The RMSE of the peak signal
obtained with PCATMIP relative to the true peak signal.
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For the two nonoverlapping zones phantom, the
PCATMIP simulation was first performed on a central
region straddling the two zones, with the maximum size
of 23 � 23 (i.e., Sb,max), and subsequently, the PCATMIP
process was performed on the entire set of images using
the optimal values for the sliding window implementa-
tion. For this Rician noise phantom, we used a SNR of 6
(achieved for b ¼ 800 sec/mm2 diffusion images on our
1.5-T MRI scanner).

Experimental Study

Several experiments were performed on a 1.5-T clinical
Siemens Avanto MRI scanner (Siemens Medical Solu-
tions, Iselin, NJ) to verify the PCATMIP approach:

a. A noise image was acquired in absolute mode using
a FLASH sequence.

b. A static water/agarose phantom was used to acquire
diffusion-weighted images.

c. A porcine model was used to acquire diffusion
images under physiological conditions.

For all scans, vendor-supplied pulse sequences were
used. A monopolar, diffusion-weighted 2D echo-planar
imaging sequence was used for imaging the water/aga-
rose phantom as well as for the porcine study. For the
animal study, a Yorkshire pig (male, 29 kg) was used in
accordance with Animal Care and Use Committee regula-
tions under an approved animal use protocol. The ani-
mal was anesthetized using isoflurane, and its breathing
was controlled with a respirator. The echo-planar imag-
ing sequence was used with the following parameter:
b-values of 0, 200, 400, and 800 sec/mm2, echo time:
68 msec, pulse repetition time: 5 sec, parallel imaging
rate 2 using GRAPPA, 6/8th partial Fourier, slice thick-
ness: 6 mm, field of view: 320 � 252 mm2, and in-plane
resolution: 2 � 2 mm2/pixel.

Ten repetitions of the DWI sequence were used to ac-
quire 18 slices in transverse and coronal directions dur-
ing free breathing. Also, to test the stability of the PCAT-
MIP method, we acquired 40 repetitions of the DWI
sequence under free-breathing conditions and randomly
divided these into six groups of 10 repetitions. Two-
dimensional nonrigid registration (2,21,22) was per-
formed for each data set to correct for bulk motion.

Subsequently, TMIP, PCATMIP, and averaging opera-
tions were performed before obtaining the diffusion trace-
weighted images and generating apparent diffusion coeffi-
cient (ADC) maps. SI and SNRs were determined using
these approaches and used to evaluate the effectiveness of
TMIP and PCATMIP approaches relative to averaging.

RESULTS

Numerical Studies

Figure 1 shows RMSE plots for the single-component
phantom and the dual-component phantom with Rician
noise added in. For both phantoms, the RMSE of the
images after PCA (Fig. 1b) stabilizes to a small value
(<9%) as a percentage of the mean signal. Similarly, the
RMSE for PCATMIP (Fig. 1c) is fairly low at increased
boxcar sizes. For both PCA and PCATMIP, the RMSE
stabilizes for boxcars bigger than 11 � 11.

Using a boxcar size of 15 � 15 and a threshold multi-
plier, b, value of 40, the two-zone phantom shown in
Fig. 1a was processed using TMIP, PCATMIP, and aver-
aging methods.

Figure 2 shows the results of the simulations with all
the images windowed to the same level as indicated by
the grayscale bar. Figure 2a shows the ideal noiseless
image without image processing, whereas Fig. 2b–d
shows the results after TMIP, PCATMIP, and averaging
operations, respectively. Although TMIP achieves the
highest SI, the PCATMIP SI is more true to the maxima
of the numerical phantom (as some TMIP signal spikes
represent noise). Averaging the noisy phantom yields the
lowest SI of the three approaches.

Experimental Studies

The Rician noise acquisition was analyzed, and the
results were compared to numerical simulations in Fig. 3.
The results were plotted as a ratio of the first eigenvalue
(representing the ‘‘DC component’’) and the last eight
eigenvalues, representing the ‘‘true noise’’ in the noise
scan. These ratios were computed over a range of boxcar
sizes yielding excellent agreement between the numerical
and experimental threshold values for boxcar sizes greater
than 13.

Figure 4 shows the results for the water–agarose phan-
tom. PCATMIP processing was done using a 15 � 15 box-
car and b of 40. Similar to the numerical phantom stud-
ies, the TMIP approach yields the highest SI and the least
SNR at all b-values. PCATMIP yields a slight increase in
SI of less than 1%, as expected in a static phantom. The
SNR of PCATMIP is lower than that of averaging by less
than 25%. With similar display windowing, the ADC
maps for the agarose/water phantom between that
obtained by PCATMIP and averaging are the same, and
this is confirmed by the calculated ADC values of 2 �
10�3 mm2/sec (23) (two-tailed P-value of 0.21 and 0.36 for
agarose and water, respectively, by t-test for unequal var-
iances using the Microsoft Excel Analysis ToolPak). The

FIG. 2. Evaluation of the entire

two-zone phantom for SNR of 6
shown in Fig. 1. a: The true,
noiseless image. b–d: Phantom

reconstruction using TMIP, PCAT-
MIP, and averaging operations.
All images are windowed to the

same level illustrated by the
grayscale bar.
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ADC value obtained by TMIP is smaller than that
obtained by PCATMIP or averaging (P ¼ 0).

Figures 5–8 show the results for the porcine liver DWI.
Figure 5 summarizes the statistics over the six different
sets of 10 repetitions. As in the phantom study, the
PCATMIP approach yields 11–18% higher SI relative to
the averaging method (P < 0.003 for b ¼ 0 and P < 0.001

otherwise by two-tail t-test considering unequal varian-
ces). Although the SNR of TMIP is less than that of the
averaging approach for all b-values (P < 0.002 by two-
tail t-test considering unequal variances), the SNR of
PCATMIP approaches that of averaging for all b > 0 (P ¼
0.33 by two-tail t-test considering unequal variances)
and decreased by 16% for b ¼ 0 (P ¼ 0.03). Using aver-
aging to process the six data sets, the ADC value in the
liver varied by 4.1 � 10�5 mm2/sec among the sets. In
contrast, the variability was 1.7 � 10�5 mm2/sec by the
PCATMIP method, suggesting that this method mini-
mized the variability of the ADC measurements by 59%.

Figures 6 and 7 show the trace-weighted coronal and
transverse images, respectively, obtained by the three dif-
ferent methods for each b-value considered. Although the
TMIP images show high SI at all b-values, there is a corre-
sponding increase in noise, as evident at the higher b-val-
ues. Both figures also show that the PCATMIP and averag-
ing approaches yield similar noise levels; however, at
higher b-values, the SI in the PCATMIP images is higher
than that of the averaged images. This is especially notice-
able in the coronal images in the anterior dome region of
the liver (higher b-values averaged images show hypoin-
tense regions). The difference in image quality between
PCATMIP and averaging is also apparent in the transverse
images in lateral and central areas of the liver.

FIG. 3. Comparing experimental and simulated Rician noise for

determining noise rejection threshold in the PCATMIP approach.

FIG. 4. Results from the static water–agarose phantom study. a: Increases of DW image intensity with TMIP and PCATMIP processing
relative to averaging. b: DW image SNR changes from TMIP and PCATMIP relative to averaging. c: ADC maps developed by
TMIP, PCATMIP, and averaging approaches. d: ADC values in agarose and water regions (*, #: two-tailed P value of 0 indicating

nonidentical ADC means values for TMIP and averaging. **P ¼ 0.36 and ##P ¼ 0.21 indicating identical ADC mean values for PCATMIP
and averaging).
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Figure 8 shows the ADC maps from representative
transverse and coronal slices as well as the difference in
the values obtained by the three approaches. The ADC
maps from TMIP appear to be noisier than those of
PCATMIP and averaging, in agreement with the SNR sta-
tistics in Fig. 5. The ADC difference between PCATMIP
and averaging is positive in some areas and negative in
others, indicating that the level of motion-induced signal
loss in the averaging approach varies among different
b-values and from location to location.

DISCUSSION AND CONCLUSIONS

Physiological motion-induced signal attenuation has
generally affected the utility of diffusion MRI particu-
larly for body imaging. Although image registration cor-
rects for the physical movement of anatomical features,
it does not help with the signal attenuation. Although

averaging over multiple repetitions improves image
SNR, it does not resolve this motion-induced signal
loss issue.

An intuitive method for recovering motion-induced
signal loss is to perform a pixel-wise TMIP over the mul-
tiple repetitions instead of averaging them. Ideally, this
results in a DWI data set of the least amount of motion-
induced signal loss. However, as TMIP assigns the pixel
values of individual repetitions to the final result, noise
spikes can easily be highlighted, leading to overestima-
tion of the image intensity and high noise levels.

The PCATMIP approach achieves an optimal middle
ground between averaging and TMIP. Our pig study
showed that the PCA of local temporal modes allowed
us to remove random noise from the physiological fluc-
tuations before the TMIP procedure. The result was
recovery of motion-induced signal loss while maintain-
ing SNR comparable to simple averaging. The keys to

FIG. 5. Results from the porcine study. a: DW image intensity increases relative to averaging from TMIP and PCATMIP processing (two-
tailed P-values using t-test with unequal variances were *P < 0.001, ##P < 0.03 for b ¼ 0 and P < 0.001 otherwise). b: DW image SNR
changes from TMIP and PCATMIP relative to averaging (two-tailed P-values using t-test with unequal variances were *P < 0.002 for

TMIP and #P ¼ 0.03 for b ¼ 0 and ##P ¼ 0.33 for b > 0 for PCATMIP). In these figures, the measurements were from the liver. The
error bars indicate the variability over the six groups of randomly assigned 10 repetitions each from a 40 repetitions acquisition. c: Varia-
tion in ADC values over the six randomly assigned data groups as determined by PCATMIP and averaging methods.
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successfully implementing PCATMIP are correctly select-
ing the boxcar size and identifying the threshold ampli-
tude of the temporal modes that separates coordinated
physiological fluctuations from random noise.

Simulations show that very small boxcar sizes lead to
a mixing of the temporal modes that represent bulk
motion with those of random noise, resulting in large
errors in the estimated motion-induced fluctuations.

FIG. 6. Trace-weighted coronal images from a porcine DWI scan. Left: TMIP; middle: PCATMIP; right: Averaging. b-values used: 0, 200,

400, and 800 sec/mm2. All images at each b-value were windowed identically; windowing of each b-value is independent of the other
b-values to highlight differences in the image processing techniques. Note the differences in the central region of the liver.

FIG. 7. Trace-weighted axial images from a porcine DWI scan. Left: TMIP; middle: PCATMIP; right: Averaging. b-values used: 0, 200,
400, and 800 sec/mm2. All images at each b-value were windowed identically; windowing of each b-value is independent of the other

b-values to highlight differences in the image processing techniques. Note the apparent higher noise level in the TMIP results and the
intensity difference between PCATMIP and averaging in the liver indicated by arrows.
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However, too large a boxcar size may include more than
two independent modes of motion, resulting in lower
SNR. The optimal boxcar size should be as small as possi-
ble but large enough to avoid appreciable contamination
from random noise modes. For a given boxcar size and
noise distribution in the raw data, it is also essential to
determine a threshold amplitude of the temporal modes
which is just high enough to reject all the random noise
modes. For Rician noise, where the noise is positively bi-
ased, a boxcar size of 30 mm and a threshold multiplier of
40 have been found to be a good combination. Signifi-
cantly, when the incoming raw data contain both magni-
tude and phase, the threshold multiplier can be set much
lower, as shown in the Appendix. For this reason, it is
worthwhile to keep the phase information in the raw data.

Computationally, PCATMIP analysis of a three b-val-
ues DWI dataset acquired over 10 repetitions requires
less than a minute after the nonrigid-body data registra-
tion (which also takes about a minute).

The main drawback of the PCATMIP approach is the
nonattenuation or enhancement of artifactual signal,
such as due to aliasing. Occasional artifactual signal is
dampened by averaging but retained by the PCATMIP
procedure as real signal. This can significantly affect the
final image and its clinical utility.

Another drawback is the need to acquire multiple rep-
etitions. It is more appropriate for low SNR situations
where this becomes necessary regardless of the process-
ing method.

In summary, we have developed an approach that per-
mits the recovery of signal intensities, primarily by the
suppression of the noise components of the acquired
data and by maximizing the SI at each spatial point
across multiple repetitions of the image acquisition. This
PCATMIP approach combines the optimal aspects of
averaging and TMIP operations and yields higher SI as
well as higher SNRs than either operation, respectively.
Due to these enhancements, this image processing
approach may prove useful in extending diffusion-
weighted imaging for body applications clinically.

APPENDIX: APPLICATION OF PCATMIP FOR
GAUSSIAN NOISE (I.E., NON-RICIAN NOISE)

For applying the PCATMIP approach to complex data,
Gaussian random noise was added to produce noisy
intensity:

I 0ðx; y ; tÞ ¼ Iðx; y; tÞ þ dðx; y; tÞ

wherein the width of the normal distribution was

Noise Level ¼ Iðx; y; tÞ
SNR

x; y 2 0;Sb;max

� �
:

Similar to the Rician analysis, a range of square boxcar
sizes (Sb,min ¼ 3 and Sb,max ¼ 23, in steps of 2) were con-
sidered. Both first and second eigenvector RMSEs were
found to approach zero for boxcar sizes greater than 9.

FIG. 8. ADC maps for represen-

tative transverse (a and b) and
coronal (c and d) slices in por-

cine DWI. Images a and c show
ADC maps developed by the
three different approaches dis-

cussed in the article, whereas
images b and d show difference

in ADC values between the three
approaches. All values are in
units of 10�3 mm2/sec.
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Monte Carlo simulation using a SNR of 2 was used to
determine the range of boxcar sizes and threshold multi-
plier (b) values over which the correct number of eigen-
values was successfully determined for single-component
and dual-component phantoms. These simulations show
that although the effective range for b is between 1 and
60 for a single-component phantom, its range is between
1 and 8 for selecting two components for the given SNR.

Based on these results, a boxcar of 11 � 11 was further
evaluated, and although the single-component phantom
had a very large range over which the value of b could be
chosen, the dual-component phantom was found to yield
successful selection of eigenvalues for b values greater
than 2 so long as SNR greater than 1 was achieved.

Finally, considering the noise-only phantom, the
numerically computed results were compared to the
eigenvalue ratio from the experimentally acquired noise
scan (Fig. A1). Unlike the Rician noise analysis, the
Gaussian noise analysis yields a lower ratio of E1/
hE3:E10i. Also, both numerically synthesized noise and
the experimental scan yielded similar results for boxcar
sizes greater than 10 with the ratio tending toward 2.

Based on these simulations, for a diffusion-weighted
set where the complex data are readily available, PCAT-
MIP can be successfully used with a boxcar size of 11 �
11 and a b of 2.
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FIG. A1. Comparing experimental and simulated Rician and Gaus-
sian noise for determining the threshold for noise rejection in PCAT-

MIP. Both magnitude-only and complex images are considered.
Complex data permit a lower threshold than magnitude-only data.
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