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Recent interest1 in Mellin power spectra, complex filter­

ing, and correlation is due to the scale invariance of the Mellin 
transform. Mellin correlation has been cited for application 
to 2-D target detection and 1-D signal processing where pa­
rameters of scale and Doppler are unknown. In such appli­
cations, Fourier domain matched filtering requires either 
sequential hypothesis testing or multichannel processing. 
Loss of correlation in the Fourier implementation due to scale 
difference between received signal and reference is exchanged, 
however, for an equally severe loss in the Mellin correlation 
due to time or positional displacement. A coherent optical 
technique for Mellin transforms is described here in which 
signals may be processed in real time to provide scale invariant 
correlations. The parameterization on time uncertainty is 
provided for automatically by utilizing an acoustooptic spatial 
light modulator. 

Methods for performing general linear integral transforms 
using parallel processing in both spatial dimensions allow real 
time operation. Several of these methods have been outlined 
recently2; one configuration, well suited for implementing 
Mellin spectrum analysis, is reviewed here. 

The general linear superposition integral may be written 
as 

for input f(x) and output g{y). The Mellin transform, with 
purely imaginary argument, 

Fig. 1. Optical implementation of 1-D Mellin transform. 

is a special case of Eq. (1), where 

Equation (1) may be rewritten as: 

where H and F are the Fourier transforms of h and f. 
The optical realization of Eq. (3) is shown in Fig. 1. The 

input function is illuminated by the cylindrical lens L1. Lens 
L2 is spherical and Fourier transforms the input function in 
both directions. The effect of the vertical transformation of 
the narrow input slit is simply to spread out the horizontal 
transform in the vertical direction. In plane P2 we place a 
mask with complex amplitude transmittance H(-vx,—vy). 
Lens L3 is spherical and again performs a 2-D Fourier trans­
formation. Thus, along a vertical output slit parallel to the 
y axis (displaced horizontally if H is realized as a carrier-fre­
quency hologram), a simple integration in the vx direction and 
a Fourier transformation in the vy direction is achieved as 
required by Eq. (3). 

The mask H(vx,vy) was made optically as a carrier-fre­
quency hologram by the configuration shown in Fig. 2. In this 
example, the real hologram transmittance is: 

Fig. 2. Recording of the required filter: (a) transparent slits; (b) 
recording geometry. 
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Fig. 3. Experimental demonstration of invariance of Mellin power 
spectrum to input scale change: (a) inputs; (b) outputs. 

The slit separation X0, shown in Fig. 2, corresponding to 
the carrier frequency X0 /2, must be greater than the extent 
of f(x) to avoid overlap with the image resulting from holo­
gram bias B. The output plane intensity is given by: 

It can be readily verified that 

Thus the output g(X0/2, -y) is the Mellin spectrum (with 
imaginary argument) of xf(x). The spectrum of f(x) can be 
obtained by use of input window re -1. 

Scale invariance of the Mellin power spectrum was dem­
onstrated experimentally. The inputs, shown in Fig. 3(a), 
were six cycles of a square wave (Ronchi ruling) at two 
frequencies, f and 2f. The output power spectra were iden­
tical over an octave of input scale change. The outputs are 
shown in Fig. 3(b). Limitation to octave scale variation was 
due to higher diffraction orders resulting from hard clipping 
of the holographic mask. The efficiency of this technique is 
inversely proportional to the input time-bandwidth product 
since the output is one-dimensional and the illumination is 
in both dimensions. This loss, coupled with low holographic 
and acoustooptic efficiencies, presents a severe limitation. 

An important application of the Mellin transform is 
implementing a scale correlation,1 R(α), between two signals 
ƒ1 and f2, where 

The scale correlation is useful in estimating Doppler between 
a received signal f(βx) and a reference signal f (x). The un­
known scale parameter is determined from the position of 
peak response of the scale correlation, since 

It has been further noted3 that the scale autocorrelation yields 
interesting signal features. The use of the Mellin transform 
in Doppler signal processing has been previously described4,5 

using a 1-D joint transform correlator. 
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The scale correlation may be realized through matched 
filtering in the Mellin transform domain in the same manner 
that translational correlations are implemented by Fourier 
domain filtering.1,4,5 The scale correlation is given as the 
inverse Mellin transform of the product of complex Mellin 
spectra M1 and M2*. Substituting the inverse Mellin trans­
form by a Fourier transform results in a distorted version R(α) 
of the scale correlation that is easier to realize optically. 

where 

An optical implementation of Eq. (9) is shown in Fig. 4. The 
input signal is f1, and the reference signal is ƒ2. The matched 
filter complex transmittance M2* may be realized as a carrier 
frequency hologram. 

By using a sliding input signal f1{vt - x) (acoustooptic 
modulation), the output 

generates a cross ambiguity function in time. Thus, in a radar 
application, an array of output detectors becomes a Doppler 
filter bank; the time of peak correlation or threshold crossing 
gives the delay, and the position of maximum response cor­
responds to Doppler. Extension to the multichannel Mellin 
correlator is straightforward, requiring an additional spheri­
cal-cylindrical pair. 

Fig. 4. Optical system for performing the scale correlation defined 
by Eq. (8). 
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