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ABSTRACT The optimum phased array combined SNR (B1-

weighted) [5] and SENSE g-factor were computed for 

various coil geometries and imaging plane orientations

based on simulated field maps. Magnetic fields (B1-maps)

for each coil were calculated using the Biot-Savart law.

The sample noise correlations between coils which are

used in calculating the optimum B1-weighted combining

and SENSE g-factor [1] were calculated from the

magnetic vector potential (A-field).

The sensitivity encoding (SENSE) [1] method of parallel 

MR accelerated imaging is evaluated and compared for 1-

d and 2-d surface coil array geometries. Accelerated MR

imaging using SENSE may be applied to volume imaging

using either 3-d or 2-d multi-slice acquisition strategies.

For higher accelerations such as rate R=4, 3-d SENSE

may be applied along either or both phase encode

directions. Image quality (SENSE g-factor) is compared

for R=4 acceleration implemented with a reduced number

of phase encodes in the y-direction, and (assuming a 3-d

acquisition) with a reduced number of phase encodes in

both y- and z-directions. Simulations show that the

performance for 1-d and 2-d array geometries depends 

highly on the slice orientation.

2. METHODS 

2.1. Coil Geometry 

The body was modeled as an elliptical cylinder with

uniform conductivity as depicted in Figure 1 with multiple

axial image planes overlaid. Surface coils arrays were 

composed of rectangular coil elements which were

tangent to the elliptical surface at the center of each coil. 

The tangent was spaced by a gap of 1 cm from the body. 

Results are presented comparing the performance between 

a 1-d linear array configuration (Fig. 2(a)) and a 2-d array

configuration (Fig. 2(b)). The dimensions which

correspond to the results are: 206 mm short axis x 326 

mm long axis body ellipse, 10 mm coil standoff, 45x210

mm2 elements for linear arrays, and 100x100 mm2

elements for 2x2 arrays. The spacing between adjacent 

coil elements was varied. The results provided are for a 10

mm gap between elements. A 160 mm thick slab was

imaged with 32 slices spaced 5 mm.

1. INTRODUCTION 

Parallel imaging methods for accelerated MR imaging are

becoming practical due to the increased affordability of

multi-channel digital receiver systems. The sensitivity 

encoding (SENSE) [1] method of parallel imaging incurs

a loss in SNR due to both reduced imaging time and sub-

optimal coil geometry (the so called g-factor). The g-

factor represents the inflation in variance due to the ill-

conditioning of the SENSE inverse solution, which

depends on the acceleration rate, the number of coils,

specific coil sensitivity profiles, and slice geometry.

Therefore, it is of interest to investigate the dependence of

g-factor on various coil geometries. Previous studies have 

been reported which optimize linear coil arrays for

SENSE application [2,3]. In this study, we investigate the

dependence of g-factor for both 1-d (linear) and 2-d (area) 

arrays for various slice geometries. We also compare the

g-factor performance for 3-d volume imaging using

acceleration along two phase encode directions versus 

acceleration along a single phase encode direction (this 

latter case may use 2d or 3d imaging). These results are

also applicable to volume imaging using SENSE for 

separation of multiple slices simultaneously excited [4].
Figure 1. Geometry of elliptical cylinder and axial

imaging planes. 
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where g denotes the Nx1 vector of aliased images (for

each coil), fSENSE denotes the 4x1 vector estimate of 

unaliased images, S is the estimated sensitivity matrix, Rn

is the estimated noise correlation matrix between coils,

and superscript H is the Hermitian operator (conjugate

transpose).

The SNR accelerated imaging using the SENSE

method may be calculated as:
 (a) (b)

SENSE optimumSNR SNR g R=  , [5]
Figure 2. Geometry of surface coil array configurations 

(a) 1-d linear array and (b) 2-d  2x2 array. where R is the acceleration factor, SNRoptimum is the B1-

weighted optimum phased array combining [5] calculated

as:2.2. SENSE SNR and G-factor Calculation 

H -1( )optimum nSNR = S R S  , [6]
The SENSE [1] technique exploits the differences in

spatial sensitivity of multiple receiver coils to eliminate

the aliased component that results from undersampling k-

space. The formulation of R=4 sensitivity encoding

(SENSE) is presented for the case of 3-d imaging using

Cartesian k-space sampling. Consider 2 cases for 

undersampling. In the first case, consider undersampling

along a single phase encode direction, y. In this case, the 

received signals may be written as: 

and the loss in SNR due to variance inflation, SENSE g-

factor [1], is defined as:

( ) ( )
H -1 -1 H -1

1
( , , )

( ) ( )k,k k,kn n

g x y z =
S R S S R S

  , [7]

where the subscript (k,k) denotes the index of the matrix

corresponding to the k-th sub-image.
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where f(x, y, z) represents the desired image, gi(x,y,z) is 

the reconstructed image for the i-th coil, si(x,y,z) is the

complex sensitivity profile for the i-th coil, N denotes the

number of coils, Dy=FOVy/4 is the distance between

ghosts, and ni is the noise for the i-th coil. In the second 

case, consider undersampling by R=2 along both the y and 

z phase encode directions for an overall R=4 acceleration. 

In this case the aliased images for each coil may be 

written as: 
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The greatest variation in the overall SENSE SNR (Eq. [5])

for the central ROI is due to the g-factor. The g-factor 

depends strongly on position (x,y,z) and has several 

hotspots. Therefore, the performance criteria included 

both the worst case (maximum) as well as the mean g-

factor in the region of interest (ROI). The phase encode

direction was chosen as the direction of minimum FOV

with FOV equal to the short axis of the ellipse.
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where Dy=FOVy/2 and Dz=FOVz/2. Equations [1] and [2]

may be written more compactly as: 

, z
+

f(x, y z - D )
 [2]

D

z -

For 3-d imaging, the slab profile attenuates the first

and last slice to avoid aliasing in the z-direction. In 

calculating the g-factor for 3-d SENSE, the first and last

slice have been zeroed. , , , ,(x, y z) (x, y z) (x, y z) (x, y z)=g S f + n . [3]

In both cases, the desired unaliased full field-of-view

images f(x,y,z) may be estimated from the measured

aliased images gi(x,y,z), provided that N 4 and assuming

the coil sensitivities are known or estimated with 

sufficient accuracy. The generalized weighted least

squares solution [1] is given by:

2.3. Field Calculations

The magnetic vector potential (A-field) and flux density

(B-field) vectors were calculated using the Biot-Savart

law evaluated for straight wire segments [6]. Each surface

coil was modeled as a set of line segments and the field

for each segment was calculated over a 3-dimensionalH -1 -1 H -1
SENSE n nf  = (S  R  S) S  R  g   , [4]
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mesh grid. The A- and B-fields at point P for a line

segment defined in Figure 3 (between points P1 and P2 

along the z-axis) may be written as: 
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Linear transformations were applied to calculate the

fields for each side (wire segment) of the rectangular coil 

elements for each grid point in the volume. The complex

coils sensitivities for MR imaging, si(x,y,z) for coil i (also

referred to as B1-map), were then calculated from the 

tangential B-field components, i.e., Bx + j By , with j

defined as -1 and the main magnetic field (B0) along the

z-direction.

Linear transformations were applied to calculate the

fields for each side (wire segment) of the rectangular coil 

elements for each grid point in the volume. The complex

coils sensitivities for MR imaging, si(x,y,z) for coil i (also

referred to as B1-map), were then calculated from the 

tangential B-field components, i.e., Bx + j By , with j

defined as -1 and the main magnetic field (B0) along the

z-direction.

  
Figure 3. Geometry for calculating field for wire segment.Figure 3. Geometry for calculating field for wire segment.

  

The noise correlation matrix for sample noise

dominated reception was calculated from the A-fields by

integration over the volume [5],

The noise correlation matrix for sample noise

dominated reception was calculated from the A-fields by

integration over the volume [5],

, ,

( , ) ( , , ) ( , , )n i j
x y z

i j A x y z A x y z= •
, ,

( , ) ( , , ) ( , , )n i j
x y z

i j A x y z A x y z= •R  , [9]

where i,j indices correspond to coils. The integration was

performed over all (x,y) in the elliptical cross-section, and

was truncated at a height (z) of 500 mm. With a stand-off

distance of 10 mm, it was empirically determined that a 

grid size of 64x64x64 provided sufficient accuracy. 

All calculations were performed using MATLAB

(The Mathworks, Natick, MA, USA). 

3. RESULTS 

The spatially varying g-factor has hotspots in regions

where the inverse solution (Eq. [4]) is ill-conditioned. 

Examples of the g-factor for axial imaging planes are

shown in Figure 4 for illustrative purposes. The g-factor

for the linear array of Fig. 2(a) is shown in Fig. 4(a) for

SENSE applied along the y (Ry=4). The g-factor for the 

2x2 array of Fig. 2(b) is shown in Fig. 4(b) for SENSE

applied along the y (Ry=4), and in Fig. 4(c) for SENSE 

applied along the y and z (Ry=Rz=2). These g-factors 

correspond to a central slice (15 of 32), which represents a 

worst case geometry for the Ry=Rz=2 SENSE cases of

Fig. 4(c). Best cases for Ry=Rz=2 SENSE are at slices 8 

and 24. The maximum g-factor is less slice dependent for 

Ry=4 cases. The g-factor images are scaled with minimum

value of 1 and maximum values of 4, 4, and 1.5, for 

Figures 4(a)-(c), respectively. The elliptical borders are 

clearly evident as aliased regions in the y-dimension in the

g-factor images of Fig. 4, while the aliasing in the z-

direction for Fig. 4 (c) is not evident since there is no 

defined structure in the z-direction for this axial image.
 1<g<4 1<g<4 1<g<1.5

z

θ2
P(xp,yp,zp) (a) linear array (b) 2x2 array (c) 2x2 array

 Ry=4 Ry=4 Ry=Rz=2
P2 θ1 Figure 4. G-factor images for slice center axial slice. 

Values of the maximum and mean g-factor values 

over the ROI are listed in Tables 1 and 2, respectively, for 

the various coils and SENSE cases. A circular ROI with

diameter of 102 mm (50% of body short axis) was used.

The oblique angles were 45º singly oblique about the x-

axis, singly oblique about the y-axis, and doubly oblique.

P1 x

φ 

y

Table 1. Maximum SENSE g-factors in ROI.

linear array 2x2 array

Ry=4 Ry=Rz=2 Ry=4 Ry=Rz=2

axial 2.3 >>10 4.6 1.5

45º singly

oblique (x) 
1.5 1.5 3.5 1.5

45º singly

oblique (y)
2.3 1.7 4.9 1.8

45º doubly

oblique
2.0 1.4 4.1 1.8

Table 2. Mean SENSE g-factors in ROI. 

linear array 2x2 array

Ry=4 Ry=Rz=2 Ry=4 Ry=Rz=2

axial 2.0 >>10 3.4 1.3

45º singly

oblique (x) 
1.2 1.3 1.8 1.2

45º singly

oblique (y)
1.9 1.4 3.5 1.3

45º doubly

oblique
1.7 1.2 2.4 1.2
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5. CONCLUSION The maximum g-factor versus the (doubly) oblique

angle of the imaging plane is shown in Figure 5 for the

linear surface coil array. The SENSE g-factor was compared for both linear and 2-

d surface coil arrays for R=4 acceleration implemented by

1) reducing the number of phase encodes in the y-

direction, and 2) reducing the number of phase encodes in

both y- and z-directions (assuming a 3-d acquisition).

Simulations show that the performance for 1-d and 2-d

array geometries depends highly on the slice orientation.

For axial 3-d imaging, the performance of SENSE with

the 2-d arrays was better than for 1-d arrays assuming

acceleration in both phase encode directions. However, as 

the imaging plane was sufficiently oblique, linear arrays 

with acceleration along the y or both y and z phase encode

directions performed as well or better.
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The comparison of worst case g-factors depend

heavily on the choice of the ROI since the location of the 

hotspots for Cartesian SENSE varies with the imaging

angle. The ROI diameter was chosen large enough so that

this effect was secondary.
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