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Joint Estimation of Water/Fat Images and Field
Inhomogeneity Map

D. Hernando,1,2∗ J. P. Haldar,1,2 B. P. Sutton,2,3 J. Ma,4 P. Kellman,5 and Z.-P. Liang1,2

Water/fat separation in the presence of B0 field inhomogeneity
is a problem of considerable practical importance in MRI. This
article describes two complementary methods for estimating the
water/fat images and the field inhomogeneity map from Dixon-
type acquisitions. One is based on variable projection (VARPRO)
and the other on linear prediction (LP). The VARPRO method is
very robust and can be used in low signal-to-noise ratio condi-
tions because of its ability to achieve the maximum-likelihood
solution. The LP method is computationally more efficient, and
is shown to perform well under moderate levels of noise and field
inhomogeneity. These methods have been extended to handle
multicoil acquisitions by jointly solving the estimation problem
for all the coils. Both methods are analyzed and compared and
results from several experiments are included to demonstrate
their performance. Magn Reson Med 59:571–580, 2008. © 2008
Wiley-Liss, Inc.
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INTRODUCTION

Methods for separating the water and fat compo-
nents in MR imaging based on their different reso-
nance frequencies have been under intensive investiga-
tion for a number of years. Dixon’s original method for
water/fat separation (1) acquires two images with differ-
ent echo time shifts, and models the signal in a given
voxel as:

s(tn) = ρW + ei2π fFtnρF [1]

where tn is the echo time shift. The water component has
intensity ρW and is assumed to be exactly on resonance,
while the fat component has intensity ρF with a known
frequency shift fF (in Hz). If the echo time shifts are cho-
sen such that 2π fFtn = {0, π}, then the two images thus
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obtained will have the water and fat signals in phase and
in opposed phase, respectively, and can be combined to
obtain the individual water and fat components. The main
limitation of this simple method arises from the presence of
B0 field inhomogeneity, which introduces additional phase
shifts that prevent Dixon’s method from correctly separat-
ing the water and fat signals. A more realistic signal model
is

s(tn) = ρWei2π fBtn + ρFei2π (fB+fF)tn [2]

where fB is the local frequency offset due to field inhomo-
geneity. In Ref. (2), a three-point method is introduced to
allow estimation of fB at each voxel. In this method, the
relative phase shifts (2π fFtn) of the water and fat signals
are typically set to {−π , 0, π} or {0, π , 2π}. These choices
simplify the estimation of the nonlinear parameter fB (2).

In recent years, there has been considerable interest in
alternative choices of echo shifts for three-point Dixon
imaging. For arbitrary echo shifts, determination of the field
inhomogeneity at each voxel cannot be decoupled from the
estimation of the water/fat contributions, and the nonlin-
earity of the maximum-likelihood (ML) estimation problem
cannot be avoided. In Refs. (3,4), a method to solve the non-
linear fitting problem, termed iterative decomposition with
echo asymmetry and least-squares (IDEAL), is proposed.
IDEAL consists of repeated linearizations of the original
nonlinear problem, alternatively estimating the water/fat
signals and the field map. Initially, this algorithm was pro-
posed for use with fast acquisition schemes (e.g., SSFP
or FSE) which constrain echo time increments to rela-
tively small values (3,5). An analysis of the performance
of water/fat decomposition under Gaussian noise is pro-
vided in Ref. (6), with the conclusion that, for three-point
acquisitions, the optimal phase shifts are {−π/6+πk, π/2+
πk, 7π/6 + πk}, where k is an integer.

However, the use of arbitrary phase shifts yields a non-
linear, nonconvex optimization problem for estimating the
water/fat contributions and the field map. Specifically, the
ML cost function will generally contain multiple local
optima, and therefore iterative, descent-based algorithms
cannot guarantee convergence to the global minimum. This
article addresses the water/fat estimation problem with two
complementary methods, which are extended to impose
field map smoothness constraints and to handle multicoil
acquisitions. These methods are described and analyzed in
the subsequent sections.

METHODS

Under the assumption of white additive Gaussian noise,
the ML estimate estimate for {ρW, ρF, fB} is obtained by
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minimizing the following cost function:

R0(ρW, ρF, fB) =
N∑

n=1

|s(tn) − ei2π fBtn (ρW + ρFei2π fFtn )|2 [3]

where N is the number of acquisitions with different echo
times (typically N = 3). Note that the water–fat frequency
shift fF is assumed known a priori.

This formulation corresponds to a nonlinear least
squares (NLLS) optimization problem, which does not gen-
erally have a closed-form solution. In this section, we
introduce two complementary algorithms to solve this
problem: (a) a variable projection (VARPRO) algorithm that
finds the globally optimal solution with moderate compu-
tational requirements, and (b) a computationally efficient
linear prediction (LP) algorithm.

Global Optimization Using Variable Projection

Estimation of {ρW, ρF, fB} by minimizing the cost function
in Eq. [3] is a separable NLLS problem. Specifically, rewrite
Eq. [3] as

R0(ρ, fB) = ‖s − �(fB)ρ‖2
2 [4]

where ρ = [ρW ρF]T , s = [s(t1) · · · s(tN )]T , and

�(fB) =




ei2π fBt1 ei2π (fF+fB)t1

ei2π fBt2 ei2π (fF+fB)t2

...
...

ei2π fBtN ei2π (fF+fB)tN


 . [5]

For a given value of fB, the least squares (LS) solution for
the linear parameters ρ is given by �†(fB)s, where † denotes
pseudoinverse. Therefore, we can remove ρ from Eq. [4]:

R(fB) = ‖s − �(fB)�†(fB)s‖2
2 = ‖[I − �(fB)�†(fB)]s‖2

2 [6]

where I is the N × N identity matrix. This is the so-called
VARPRO formulation of the original NLLS problem in Eq.
[4]. It has been shown that R0(ρ, fB) and R(fB) have the
same global minimum (7,8). Using Eq. [6], the optimal lin-
ear and nonlinear parameters in Eq. [4] can be determined
separately as follows

f o
B = arg min

fB
R(fB) [7]

ρo = �†(f o
B

)
s. [8]

This formulation has several desirable features:

a. Minimization of R(fB) in Eq. [7] is a nonconvex prob-
lem (with multiple local optima), but it is only a
one-dimensional problem, which can be effectively
solved using a search method. Specifically, assuming
suitable bounds fB,MIN and fB,MAX on the field inho-
mogeneity, we can evaluate R(fB) on a set of L closely
spaced points {fB,l}L

l=1 on the interval [fB,MIN, fB,MAX]
and select the minimum. Thus, the presence of multi-
ple local minima in R(fB) does not hinder attaining the
global minimizer f o

B .
b. Once f o

B is known, estimation of ρo from Eq. [8] reduces
to a small matrix multiplication.

c. Computation of �†(fB) for the values {fB,l}L
l=1 can be

performed efficiently by rewriting �(fB) = �(fB)�,
where

� =




1 ei2π fFt1

1 ei2π fFt2

...
...

1 ei2π fFtN


 , and

�(fB) =




ei2π fBt1 0 · · · 0
0 ei2π fBt2 · · · 0
...

...
...

0 0 · · · ei2π fBtN


 . [9]

Therefore, the desired pseudoinverse is simply
�†(fB) = �†�(−fB), noting that �(fB) is a unitary matrix
and also �−1(fB) = �(−fB). Furthermore, only one
pseudoinverse needs to be computed for the entire
decomposition, even if ρ is estimated for many differ-
ent values of fB at each voxel, since � does not depend
on fB or s. If � has full column rank, this pseudoinverse
computation reduces to �† = [�H �]−1�H .

This application of VARPRO is similar to a recently pro-
posed method for estimation of the T1 relaxation constant
(9). Note that this formulation is flexible on the choice of
the echo time shifts, although obviously at least N = 3
acquisitions are required for the estimation problem to be
well-posed in voxels containing both water and fat.

Imposing Spatial Constraints

Voxel-by-voxel ML estimates may lead to erroneous decom-
positions at some voxels due to the presence of noise and
the inherent ambiguity of the model (Eq. [2]) when a sin-
gle component is present (10). To improve the water/fat
separation, spatial smoothness is commonly imposed as
prior knowledge on the estimate of the field map (3,11–13).
Clearly, field map smoothing can be performed in a separate
step, similarly to the original IDEAL algorithm (3). How-
ever, as noted in (10), this approach can be problematic if
the field inhomogeneity is large (e.g., fB ≥ fF) because phase
shifts due to field inhomogeneity become indistinguish-
able from those due to the presence of different chemical
species. A region-growing method is proposed in (10) to
address this problem.

Within the VARPRO formulation, decoupling the estima-
tion of fB and ρ allows us to effectively impose smoothness
constraints on the field map. Here, we propose to use a
Markov random field (MRF) prior on the field map (14).
The MRF prior can be imposed efficiently using the well-
known iterated conditional modes (ICM) algorithm (15).
Let us denote f B = {f q

B }Q
q=1 as the complete field map for

all Q voxels. ICM iterates several times through all the
voxels, updating one at a time. In this paper, we have con-
sidered simple Gaussian smoothness priors, resulting in
the following update for voxel q (with neighborhood δq):

f q,new
B = arg min

f q
B

R
(
f q
B

) + µ
∑
j∈δq

wq,j
∣∣f q

B − f j,cur
B

∣∣2 [10]

where f j,cur
B is the current field inhomogeneity estimate

at neighboring voxel j, wq,j are weights that control the
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field difference between voxels q and j, and µ controls the
amount of smoothness imposed by the MRF. Note that, from
a regularization standpoint, squared differences in the field
map are penalized to enforce smoothness. Also, the results
will be generally less sensitive to the choice of a few seed
voxels than a region-growing method, since the complete
field map estimate will be recomputed iteratively.

VARPRO requires setting several parameters. The field
inhomogeneity bounds were set to almost the chemical
shift between water and fat, i.e. ±200 Hz for 1.5 T acqui-
sitions and ±400 Hz for 3 T acquisitions. These bounds
were sufficient for all the cases presented in this article.
The number of discretized field values used in the opti-
mization was L = 300, which provides a good tradeoff
between estimation accuracy and computational efficiency
(see Appendix for mathematical details on the selection
of the discretization step size). The MRF neighborhood
employed was the square of size 5 × 5 voxels centered at
each voxel (excluding the center). The weights wq,j were
set to the inverse of the distance between voxels q and j.
Finally, the regularization parameter µ was set to σ 2/30,
where σ 2 is the estimated noise variance. The value of σ 2

can be estimated from the data itself, or alternatively from
prescan noise only data (16). According to the MRF model,
the value of µ is the ratio between the noise variance in the
acquired images and a measure of the variability of the field
map. Even though these values can be further optimized
for each particular acquisition, we chose to maintain them
constant throughout the results presented in this paper to
highlight the robustness of the proposed method.

The VARPRO-based method with MRF prior is summa-
rized below:

1. Initialize the field map estimate f B (e.g., all zeros).
2. Precompute the cost function {R(fB,l)}L

l=1 (Eq. [6])
for a set of field inhomogeneity values fB,l ∈
[fB,MIN, fB,MAX], for all voxels.

3. For each voxel, update the field map estimate using
Eq. [10].

4. Repeat step (3) until the overall field map change
falls below some small threshold ε > 0:

Q∑
q=1

∣∣f q,new
B − f q,cur

B

∣∣ < ε. [11]

5. For each voxel, estimate ρW and ρF given the esti-
mated field map using Eq. [8].

Multicoil Acquisitions

Following (3), let us consider a multicoil acquisition with
P distinct coils, which produce P images with independent
amplitude weightings and phase offsets. Thus, the signal at
a given voxel corresponding to coil p with echo time tn can
be modelled as

sp(tn) = ei2π fBtn (ρW,p + ρF,pei2π fFtn ) [12]

where ρW,p and ρW,p are the the water and fat signal inten-
sities, weighted by the complex-valued sensitivity of coil p
at the location of the voxel under consideration.

The proposed VARPRO formulation can be extended to
optimally (in the ML sense) estimate the field map as well

as the P sensitivity-weighted water/fat images. According
to the signal model in Eq. [12], the new cost function is

RMC,0(ρ1, . . . , ρP , fB) = R1,0(ρ1, fB) + · · · + RP,0(ρP , fB) [13]

where ρp = [ρW,p ρF,p]T and Rp,0(ρp, fB) is the single-coil
cost function for the signal sp, as defined in Eq. [4]. Clearly,
fB is the only nonlinear parameter under consideration
and thus the VARPRO approach discussed earlier can be
naturally extended by simply minimizing the sum of the
individual cost functions. Since for each value of fB all the
linear parameters {ρ1, . . . , ρP} are obtained immediately by
solution of P linear LS problems, we can express the com-
bined cost function in the VARPRO formulation RMC(fB)
(similarly to Eq. [6]), and again a global one-dimensional
search is possible to find the optimal fB estimate.

As in the single-coil case, the water/fat amplitudes can
be determined efficiently once fB is estimated, by solv-
ing the corresponding linear problem (Eq. [8]) for each
coil. After the P sensitivity-weighted water/fat images are
obtained, they can be combined using standard multicoil
combination techniques (3,17–19).

Here, the coil sensitivities are assumed unknown. If they
are known, the VARPRO formulation can still be used, with
the difference that only two component amplitudes, ρW and
ρF, and the field inhomogeneity, fB, need to be estimated at
each voxel.

Efficient Solution Using Linear Prediction

If the images are acquired at uniformly spaced echo times,
a computationally faster solution is possible. Assuming the
echo times are tn = t0 +n�t, n = 1, . . . , N , the signal model
in Eq. [2] can be rewritten as follows:

s(tn) =
2∑

m=1

amzn
m, n = 1, . . . , N [14]

where a1 = ρWei2π fBt0 , a2 = ρFei2π (fF+fB)t0 , z1 = ei2π fB�t , and
z2 = ei2π (fF+fB)�t .

This signal, in the absence of noise, is linearly pre-
dictable with coefficients {g1, g2}, i.e.

s(tn) = g1s(tn−1) + g2s(tn−2), n = 3, . . . , N [15]

and, since |z1| = |z2| = 1 it is also backward-predictable
with the same prediction coefficients:

s∗(tn) = g1s∗(tn+1) + g2s∗(tn+2), n = 1, . . . , N − 2. [16]

Furthermore, it can be shown that the polynomial

G(z) = 1 − g1z−1 − g2z−2 [17]

has its roots at z1 and z2 (see, e.g., (20) for details).
This formulation enables an efficient determination of

the parameters in the signal model (Eq. [2]). Similarly
to the VARPRO method described earlier, the problem is
solved by estimating the linear and nonlinear parameters in
two separate steps. First, the prediction coefficients {g1, g2}
are estimated using the so-called forward-backward LP
by simultaneously solving Eqs. [15] and [16] (21). Next,
the estimates for zm are computed as the roots of G(z),
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and the linear parameters am are obtained by solving the
corresponding linear problem (Eq. [14]).

In the absence of noise, the parameters {ρW, ρF, fB} are
obtained directly from the LP estimates {am, zm}, as long as
a1 �= 0 and a2 �= 0. Denoting φm = ∠zm/(2π�t), then either
φ2 = φ1 + fF or φ2 = φ1 − fF. Without loss of generality,
we can sort {φm} so that the former is satisfied. Thus, the
signal parameters are obtained as follows: fB = φ1, ρW =
a1e−i2π fBt0 , and ρF = a2e−i2π (fB+fF)t0 .

If one of the components is absent, the signal model
becomes ambiguous (10) and assigning the observed com-
ponent to water or fat requires some prior knowledge.
Similarly, in the presence of noise, the frequency sepa-
ration of the observed components will not be exactly
fF. Assuming a limited range on the field inhomogeneity,
[fB,MIN, fB,MAX], we propose to assign to water and fat the
component with estimated frequency φm closest to 0 and
fF, respectively, i.e., the component minimizing

φW = arg min
φ∈{φ1,φ2} |φ|, s.t.φ ∈ [fB,MIN, fB,MAX] [18]

is assigned to water (with corresponding amplitude ρW =
aW e−i2π fBt0 ), and the component minimizing

φF = arg min
φ∈{φ1,φ2} |φ − fF|, s.t.φ ∈ [fF + fB,MIN, fF + fB,MAX]

[19]

is assigned to fat (with amplitude ρF = aF e−i2π (fB+fF)t0 ).
If no estimated frequency φm lies within the specified

bounds for a given component, this component is assumed
not present at the current voxel. Subsequently, the field
map value can be estimated at each voxel by weighted aver-
aging of the individual estimated field inhomogeneities:

fB,v = φW|ρW| + (φF − fF)|ρF|
|ρW| + |ρF| . [20]

Imposing Spatial Constraints

The voxel-by-voxel LP-based method typically produces
rougher field map estimates than VARPRO, due to the sub-
optimal nature of LP for solving the NLLS fitting problem
(minimizing Eq. [3]) in the presence of noise. Thus, the LP
field map estimate can benefit from spatial regularization.
However, the LP formulation does not provide the same
flexibility as VARPRO for incorporating spatial constraints.
Here, we propose to impose smoothness on the field map
in a separate step, by penalizing deviations from the voxel-
by-voxel estimates as well as field map roughness. This can
be formulated effectively as a regularized LS problem:

ˆf B = arg min
f B

[‖W(f B − f B,v)‖2 + λ‖Df B‖2] [21]

where f B is the complete field map (a length-Q vector cor-
responding to the Q voxels in the image), f B,v is the rough
field map estimated independently at each voxel (Eq. [20]),
W is a diagonal weighting matrix used to place more weight
on field map estimates from voxels where the signal level
is higher, D computes spatial finite differences in the field
map, and λ is a regularization parameter controlling the
tradeoff between field map smoothness and data fidelity.

This minimization reduces to a linear problem:

(WH W + λDH D) f̂ B = WH Wf B,v [22]

and can be solved efficiently using, e.g., a conjugate-
gradient method (22). This method is similar to the one
proposed in (3), where the water/fat images and field map
are estimated point by point and field map smoothing
is performed separately. Decoupling both steps simplifies
the algorithm and reduces the computational burden. It
must be noted that this “two-step” method is suboptimal,
and is expected to perform well only in cases of moder-
ate field inhomogeneity. Specifically, the smoothing step
will generally not be able to correct large errors in the
field map estimate, e.g., in voxels where water and fat are
swapped during voxel-by-voxel processing (10,13). Finally,
the water and fat components should be reestimated at each
voxel using the regularized field map f̂ B by solving the
corresponding linear problem (Eq. [8]).

In this article, we have employed the following parame-
ters for LP: the weighting matrix W was set to the sum of the
signal amplitudes at each voxel, normalized to have a max-
imum value of 1 (thus assigning more weight to the field
map estimates from voxels containing higher signal ampli-
tude). The regularization parameter λ was set to 1. Similarly
to VARPRO, the parameters for LP were fixed throughout
the results.

Since the proposed regularization of the field map will
place very little weight on estimates from voxels that
contain only noise (e.g., voxels where the signal ampli-
tude is below a noise threshold), these voxels may be
skipped (and their field inhomogeneity set to zero) during
the voxel-by-voxel estimation, for increased computational
efficiency.

The LP-based algorithm for regularized estimation of
water/fat images and field map can be summarized as
follows:

1. At each voxel with signal amplitude above a noise
threshold, perform forward-backward LP to obtain zk
and ak following Eqs. [15], [16], and [14]. Assign the
estimated components to water/fat using Eqs. [18]
and [19].

2. Obtain the regularized field map f̂ B by imposing
spatial smoothness (Eq. [21]).

3. Reestimate the water/fat components ρW and ρF at
each voxel using the regularized field map (Eq. [8]).

Multicoil Acquisitions

The single coil LP algorithm can easily be extended to
handle multicoil acquisitions. According to the multicoil
signal model in Eq. [12], the field inhomogeneity effect is
the same for all coils, and furthermore the signals detected
at a particular voxel by the different coils are different lin-
ear combinations of the same complex exponentials. Thus,
the prediction coefficient vector is the same for all coils,
which can simply be enforced by solving Eqs. [15] and
[16] simultaneously for all coils. Once the prediction coef-
ficients (and thus the zk ) are obtained, the amplitudes of the
different chemical species can be estimated independently
for each coil using Eq. [14].
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FIG. 1. Comparison between theoretical bounds (CRLB) and empir-
ical MSE for amplitude estimation. The solid line indicates the
CRLB, while the circles and asterisks represent the empirical results
obtained from VARPRO and LP, respectively.

RESULTS AND DISCUSSION

A simulation study was done to test the performance
of the proposed methods for single-voxel decomposition
in the presence of noise. Figure 1 shows a comparison
of the Cramér-Rao lower bound (CRLB, a lower bound on
the variance of any unbiased estimator (6,23)) and mean
squared error (MSE) simulation results for amplitude esti-
mation using three samples (N = 3) with phase shifts
{−π/6, π/2, 7π/6}. This choice of phase shifts is optimal for
all water/fat ratios, as shown in (6). The simulated signal
contains two components with amplitudes ρW = ρF = 1.
Complex Gaussian noise with a range of different vari-
ances was added to the signal. The VARPRO estimate
appears to be efficient (i.e., unbiased and with MSE match-
ing the CRLB) for all SNR values. The LP estimate becomes
more robust as the SNR increases. Figure 1 shows that, at
lower SNR, the VARPRO approach is preferable. On the
other hand, at higher SNR, LP provides a competitive and
computationally efficient solution to the water/fat imaging
problem.

A quantitative comparison of the accuracy of the pro-
posed methods and IDEAL (including spatial regulariza-
tion of the field map) was performed using synthetic
data. Three synthetic datasets were generated, based on
brain, abdominal, and cardiac acquisitions, respectively.
The water and fat images were obtained by wavelet denois-
ing the estimated water/fat components (obtained using
VARPRO with no spatial regularization on the field map)
from each in vivo dataset. The synthetic field maps were
obtained by smoothing the corresponding voxel-by-voxel
estimated field maps. This was done by applying a Ham-
ming window in the Fourier domain. Note that the field
map smoothing step in our implementation of the IDEAL
algorithm was performed with the same Hamming window
used to generate the synthetic field maps (3). Several field
maps, simulating increasing severity of field inhomogene-
ity, were obtained in each case by scaling each synthetic
field map. The water/fat images were then combined with
each field map according to the signal model in Eq. [2] to

obtain datasets with increasing levels of field inhomogene-
ity. The water/fat chemical shift was 215 Hz and the the
TEs produced water/fat phases {−π/6, π/2, 7π/6}. Finally,
complex Gaussian noise was added to each of the datasets
(SNR = 20). The noisy datasets were then processed using
IDEAL, VARPRO and LP, and the resulting decompositions
compared to the true images. Figure 2 shows the relative
norm of the error (averaged for the brain, abdominal, and
cardiac simulated datasets) in the resulting water image
produced by IDEAL, VARPRO, and LP. Note how VARPRO
performs almost uniformly well for all levels of field inho-
mogeneity, whereas the errors of LP and IDEAL increase
sharply as the maximum field inhomogeneity becomes
larger than |fF|/2. This is due to the misclassifications that
occur in the voxel-by-voxel decomposition, which are only
partially removed in the field map smoothing step. Also,
for low field inhomogeneities, LP performs nearly as well
as VARPRO and IDEAL.

To test the proposed methods on in vivo data, several
brain images were obtained using optimal echo spacings
(4), with TE values {3.38, 4.17, 4.97} ms, corresponding
to water/fat phases {7π/6, π/2, −π/6}. Data were acquired
on a 3 T Siemens Allegra head scanner in accordance
with the local institutional review board. Figure 3 shows
the water/fat decomposition and field map obtained with
IDEAL (3) and the proposed VARPRO and LP methods,
respectively. The water/fat decompositions using all three
methods are very similar. The differences observed in the
estimated field map are due to the different strategies
for imposing field map smoothness: (a) IDEAL filters the
raw field map with a smoothing kernel (3), and thus the
estimates from voxels where the signal is mostly noise
are preserved; (b) VARPRO imposes a smoothing MRF
prior on the field map (Eq. [10]), automatically assigning
more weight to field inhomogeneity estimates from vox-
els with higher signal intensity; (c) LP applies a weighted
LS smoothing (Eq. [21]) which has a similar effect to the
MRF-based approach, since the weights applied on the field

FIG. 2. Quantitative comparison of IDEAL, VARPRO, and LP for
water/fat decomposition including spatial smoothness constraints on
the field map. Relative errors are shown for water image reconstruc-
tion using the three methods, for different levels of field inhomogene-
ity, and averaged for three different synthetic datasets.
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FIG. 3. Water/fat decomposition from a brain acquisition. The first column contains the estimated water component using the different
algorithms. The second column contains the estimated fat component. The third column contains the regularized field map. (a–c) IDEAL
estimates. The smooth field map is obtained by filtering the raw field map (resulting from voxel-by-voxel estimation) with a smoothing kernel (3);
(d–f) VARPRO estimates. The smooth field map is obtained directly by applying an MRF prior; (g–i) LP estimates. The smooth field map is
obtained by weighted LS regularization of the raw field map.

map estimates are proportional to the amplitudes of the
corresponding components.

To test the multicoil version of the proposed methods, a
multicoil acquisition of the abdomen was performed using
six different TE values, {1.5, 2.0, 3.6, 5.1, 6.6, 8.2} ms, corre-
sponding to relative water/fat phases {−7π/5, −7π/6, −π/2,
π/6, 5π/6, 3π/2}. Data were collected on a GE 1.5 Tesla
whole body scanner (GE Healthcare Technologies, Wauke-
sha, WI) using a four-channel torso phased-array receiver
coil. The pulse sequence used was a 3D fast spoiled gradi-
ent echo sequence. Each 3D data set (for a corresponding
echo time) was acquired in a single but separate breath
hold. All data were collected in accordance with the local
institutional review board.

The multicoil results are shown in Fig. 4. Figures 4a–
c show the “gold standard" decomposition obtained from
VARPRO using all six shifts. Figures 4d–f show the results
from VARPRO using only three different echo times (with
water/fat phases {−7π/6, −π/2, π/6}). Figures 4g–i show
the resulting decomposition from the same three echo
times, using the LP method. Note the high quality of the
decompositions obtained with both methods using just
three echo times.

Figure 5 shows a comparison of IDEAL and the proposed
VARPRO method in the presence of high field inhomo-
geneity. The images were acquired with water/fat phases
{7π/6, π/2, −π/6}, on a 3 T Siemens Allegra head scanner
in accordance with the local institutional review board.
The field inhomogeneity reached approximately 360 Hz.
The VARPRO method included spatial regularization using
ICM. Note how IDEAL swaps the different components
in part of the image, whereas the proposed method is
able to correctly separate the water and fat signals. This
increased robustness is due to the global optimality of the
VARPRO approach, regardless of the nonconvexity of R(fB),
and the improved method for imposing spatial smooth-
ness on the field map (which is performed jointly with
the water/fat estimation, instead of in a separate step).
A region-growing method (10) is also expected to per-
form well for this type of dataset. However, the fact that
VARPRO produces good results in this case (using the
same parameters as in the moderate field inhomogeneity
cases) highlights the robustness of the proposed method.
Although ICM only guarantees convergence to a local opti-
mum of the a posteriori distribution, ICM-based field map
estimation is less dependent (compared to region-growing)
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FIG. 4. Water/fat decomposition from a multicoil abdominal acquisition. The first column contains the estimated water component using
the different algorithms. The second column contains the estimated fat component. Both components are displayed using sum of squares
combination of the multicoil signal. The third column contains the regularized field map. (a–c) VARPRO estimates using all six echo time
shifts; (d–f) VARPRO estimates using three water/fat shifts; (g–i) LP estimates using three water/fat shifts.

on the initial values assigned to the field map (which is set
to all zeros at the beginning of the ICM iteration for all the
results presented in this paper).

The three methods considered in this article present
different computational requirements. In IDEAL, most of
the computation time is spent solving two small sys-
tems of linear equations for updating the estimated field
value and the water/fat amplitudes (3). This is done itera-
tively (until a convergence criterion is satisfied) for each
voxel from each coil. While an iterative procedure may
potentially require many iterations to converge, in our
experience convergence typically occurs in a few itera-
tions, so the method is quite fast. After the voxel-by-voxel
iterative procedure, low-pass filtering the field map esti-
mate and recomputing the water/fat images is done very
rapidly. In VARPRO, first the residual (Eq. [6]) must be
computed for all voxels and field map values, and next
the field map is estimated by repeatedly updating its value
at all voxels according to Eq. [10]. Subsequent estima-
tion of the water/fat images given the field map requires
negligible computation. In LP, the main computational
burden consists of solving a small linear system and poly-
nomial rooting at each voxel with signal above the noise
threshold, and smoothing the estimated field map by solv-
ing a regularized LS problem. We compared our own
Matlab (The Mathworks, Natick, MA) implementations

of IDEAL, VARPRO, and LP. Note that the execution
times reported here are expected to decrease dramatically
when optimized and coded in C on a fast, multiproces-
sor architecture. For a single-coil, three-point dataset with
images of size 128×128, the voxel-by-voxel IDEAL method
followed by low-pass filtering of the fieldmap and reesti-
mation of the water/fat amplitudes throughout the image
(as described in (3)) required 16.5 sec on an Intel Xeon-
based desktop PC at 3.6 GHz with 8 GB of RAM. To
solve the same problem, the VARPRO method with MRF
prior, with L = 300 field inhomogeneity values and 30
ICM iterations required 64.3 sec, whereas the LP method
using weighted LS field map regularization required 18.8
sec.

Multicoil acquisitions (number of channels P > 1) are
handled by the proposed methods with a small increase in
computation time. For an eight-coil (P = 8), three-point
dataset with images of size 128 × 128, the computation
time for IDEAL was 114.4 sec, while VARPRO required 79.8
sec and LP required 39.4 sec. The observed differences are
mainly due to the fact that the proposed methods directly
impose the presence of a unique field map (thus solving the
same nonlinear problem as in the single-coil case), whereas
IDEAL solves P nonlinear problems and then combines the
resulting field maps. This does not imply any fundamental
limitation of IDEAL: the proposed multicoil formulation
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FIG. 5. Comparison of IDEAL and VARPRO results in the presence of high field inhomogeneity. (a–c) IDEAL estimates for water, fat, and
field map, respectively; (d–f) VARPRO estimates for water, fat, and field map, respectively.

used with VARPRO in this paper can be incorporated into
the IDEAL algorithm.

In recent work, Yu et al. proposed an extension of the
IDEAL algorithm to include simultaneous estimation of T∗

2
(24). Relaxation effects are naturally accounted for within
the LP formulation. However, to take relaxation effects into
account, |zn| < 1 in Eq. [14], and thus forward and back-
ward linear prediction cannot be used simultaneously as in
the |zn| = 1 case. For example, if two damped components
are to be estimated, at least four uniformly spaced data
points need to be acquired. Clearly, the VARPRO method
can be applied for the estimation of multiple nonlinear
parameters (e.g., relaxation effects). However, the compu-
tational demands increase significantly with the number of
nonlinear parameters.

Both VARPRO and LP can be used to estimate multi-
ple chemical species. If the chemical shifts are known
exactly, then VARPRO is very efficient and robust (since
the problem still reduces to a one-dimensional search). On
the other hand, LP estimates all the chemical shifts and
thus requires a larger number of measurements. Both meth-
ods have been studied extensively in the context of MR
spectroscopy quantitation (25).

CONCLUSIONS

This article presented two novel methods for joint estima-
tion of water/fat images and field inhomogeneity map from
Dixon-type acquisitions. The VARPRO method overcomes
several limitations of previously proposed descent-based
algorithms. First, it provides an efficient and globally opti-
mal solution to the nonconvex NLLS problem. Second,
spatial smoothness constraints on the field map estimate
are enforced in a statistically meaningful way using an
MRF prior. The LP method produces good results under

moderate noise and field inhomogeneity conditions and is
computationally very efficient. This method can be used
as long as the echo times are uniformly spaced. Both LP
and VARPRO allow natural extensions to handle multicoil
acquisitions, as well as cases in which there are more than
two chemical species, or when relaxation effects cannot be
neglected.

APPENDIX

One key aspect of the proposed VARPRO method is the
discretization of the feasible range of main field values
as a finite set of values {fB,l}L

l=1. An important require-
ment for the minimizing solution to be meaningful is that
the spacing is small enough relative to the variability of
R(fB). In other words, we need to guarantee that R(fB) does
not contain abrupt changes which are not captured by
the discretized version {R(fB,l)}L

l=1. For this purpose, let us
consider the derivative of R(fB). From Eq. [6],

dR(fB)
dfB

= −
∑
m,n
m �=n

s∗(tn)s(tm)�n,mei2π fB(tn−tm)2π (tn − tm)

where � = �(�H �)−1�H . The following bound follows
readily:

∣∣∣∣
dR(fB)

dfB

∣∣∣∣ ≤ | max
k

s(tk )|2
∑
m,n
m �=n

|�n,m2π (tn − tm)| = B. [A1]

Given the discretization spacing �fB = fB,l+1 − fB,l , this
provides a bound on the maximum difference of the global
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optimum of the continuous function R(fB) from the dis-
cretized version {R(fB,t)}T

t=1:

| min
fB∈[fB,MIN,fB,MAX]

R(fB) − min
l=1,2,...,L

{R(fB,l)}L
l=1| ≤ �fB

2
B [A2]

which produces a useful criterion to ensure that the cost
function R(fB) is smooth with respect to �fB. For exam-
ple, let us consider the signal from voxel (65, 65) in the
brain acquisition shown in Fig. 3. Using field inhomo-
geneity bounds ±400 Hz with L = 300 uniformly spaced
discretized values, Eq. [A2] guarantees that the difference
between the minimal residual in the discretized and con-
tinuous problems will be at most 0.6% of the range of the
residual.

LIST OF SYMBOLS

am LP amplitude corresponding to mth component
B0 main (static) magnetic field (T)
D matrix for computing 2D finite-differences for

regularization of field map
fB off-resonance frequency caused by field

inhomogeneity (Hz)
fB,v single-voxel LP estimate of field inhomogeneity (Hz)
f o
B optimal estimate for field inhomogeneity (Hz)

fB,MIN lower bound on the field inhomogeneity (Hz)
fB,MAX upper bound on the field inhomogeneity (Hz)
f q
B field inhomogeneity at voxel q (Hz)

f q,cur
B current value of field inhomogeneity at voxel q (Hz)

f q,new
B updated value of field inhomogeneity at voxel q (Hz)

fF chemical shift between water and fat (Hz)
f B vector containing the complete field map (Hz)
f B,v vector containing the field map estimated

voxel-by voxel (Hz)
f̂ B regularized field map (Hz)
gm mth LP coefficient
g LP coefficient vector
G polynomial associated with LP coefficient vector
I identity matrix
L number of different field inhomogeneity values for

discretization in VARPRO
N number of acquisitions
P number of distinct coils in multicoil acquisitions
Q number of voxels in image
R maximum-likelihood cost function in the

VARPRO formulation
R0 original maximum-likelihood cost function
Rp,0 original maximum-likelihood cost function for

signal from pth coil
RMC augmented cost function for multicoil acquisitions

(VARPRO formulation)
RMC,0 augmented cost function for multicoil acquisitions
s acquired signal at a given echo time
sp acquired signal from coil p at a given echo time
s vector of acquired signals at different times
tn echo time of the nth acquisition (sec)
W weighting matrix for field map regularization in

LP method

zm LP pole corresponding to mth component
� matrix used in the derivation of the bound on the

accuracy of the VARPRO discretization
δq neighborhood of voxel q in MRF formulation
�t spacing between echo times of consecutive

acquisitions (sec)
ε threshold for stopping criterion in ICM iteration
λ regularization parameter for LP method
� diagonal matrix applying effect of field

inhomogeneity into signal
µ regularization parameter for VARPRO method

with MRF prior
ρW amplitude of water component
ρF amplitude of fat component
ρW,p amplitude of water component in pth image

(multicoil acquisitions)
ρF,p amplitude of fat component in pth image

(multicoil acquisitions)
ρ vector containing both water and fat amplitudes
ρp vector containing both water and fat amplitudes

in pth image (multicoil acquisitions)
ρo optimal estimate for water and fat amplitudes
φm estimated frequency of mth component detected

with LP (Hz)
φF estimated frequency of component assigned to fat

(Hz)
φW estimated frequency of component assigned to

water (Hz)
� matrix mapping amplitudes into signal samples

in the absence of field inhomogeneity
� matrix mapping component amplitudes to

signal samples
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