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Robust Water/Fat Separation in the Presence of Large
Field Inhomogeneities Using a Graph Cut Algorithm

Diego Hernando,1,2* P. Kellman,3 J. P. Haldar,1,2 and Z.-P. Liang1,2

Water/fat separation is a classical problem for in vivo proton
MRI. Although many methods have been proposed to address
this problem, robust water/fat separation remains a challenge,
especially in the presence of large amplitude of static field
inhomogeneities. This problem is challenging because of the
nonuniqueness of the solution for an isolated voxel. This paper
tackles the problem using a statistically motivated formulation
that jointly estimates the complete field map and the entire
water/fat images. This formulation results in a difficult optimiza-
tion problem that is solved effectively using a novel graph cut
algorithm, based on an iterative process where all voxels are
updated simultaneously. The proposed method has good theo-
retical properties, as well as an efficient implementation. Simu-
lations and in vivo results are shown to highlight the properties
of the proposed method and compare it to previous approaches.
Twenty-five cardiac datasets acquired on a short, wide-bore
scanner with different slice orientations were used to test the
proposed method, which produced robust water/fat separation
for these challenging datasets. This paper also shows example
applications of the proposed method, such as the characteriza-
tion of intramyocardial fat. Magn Reson Med 63:79–90, 2010.
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Key words: water/fat; graph cut; field map; cardiac MRI; Dixon

In vivo proton MR images contain signals from water and
fat protons. Separation of the water and fat signals is a
problem of considerable practical importance. In some
cases, the fat signal is of diagnostic interest (1–3), and
in other circumstances it appears bright and obscures
the water signal (4). A number of methods have been
developed to address the water/fat separation problem.
A straightforward approach is to suppress the fat signal
during excitation, which can be done using fat satura-
tion or spatial-spectral pulses (based on the difference in
the resonance frequencies of water and fat protons) (5,6),
or by signal nulling using a short-tau inversion recovery
sequence (based on the short T1 relaxation time of the fat
signal) (7). However, fat suppression has well-known lim-
itations, e.g., high sensitivity to amplitude of static field
and amplitude of radio frequency field inhomogeneities,
removal of fat signal information, or loss of signal-to-noise
ratio (1,4,8).
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An alternative is to separate the water and fat com-
ponents by postprocessing chemical shift-encoded data,
which is the crux of the celebrated Dixon method (9) and
its many variants. In a chemical shift–based water/fat sep-
aration acquisition, a sequence of images is obtained with
different echo time (TE) shifts, t1, t2, . . . , tN (typically N =
3). The signal at an individual voxel q can be described by
the simplified model:

sq(tn) = ei2π fB,qtn
(
ρW,q + ρF,qei2π fFtn

)
, for n = 1, . . . , N , [1]

where fB,q (in hertz) is the local frequency shift due to static
field inhomogeneity, ρW,q and ρF,q are the amplitudes of the
water and fat components, respectively, and fF (in hertz)
is the frequency shift of fat relative to the water, which
is assumed to be known a priori (4,9,10). In this simpli-
fied model, T*

2 effects are ignored and the fat signal is
considered to have a single spectral line (11,12). These sim-
plifications can be removed if needed, as described in the
Materials and Methods section.

The unknowns in the signal model of Eq. [1] are the non-
linear parameter fB,q and the linear parameters {ρW,q, ρF,q},
for q = 1, . . . , Q, where Q is the number of voxels. Clearly,
estimation of {ρW,q, ρF,q} is trivial if fB,q is known. How-
ever, estimation of fB,q is complicated by the nonlinearity of
the signal model. Several practical factors make the prob-
lem even more challenging, including the large range of
fB,q, rapid spatial variation of fB,q, presence of low-signal
regions, “spectral aliasing” (especially for long TE spac-
ing, or at high field), and ambiguities and inaccuracies
in the signal model (for instance, the signal model in Eq.
[1] is ambiguous in voxels containing only water or only
fat) (4,8,11–14).

A number of methods have been proposed for water/fat
separation, which differ essentially in how they address
the effects of field inhomogeneities in the acquired signal.
Dixon’s (9) original method assumes fB,q = 0 and performs
water/fat separation using only two images. Glover and
Schneider (10) proposed a three-point method (N = 3)
where the tn are chosen such that fB,q can be estimated
directly from the first and third images, avoiding the non-
linearity of the problem. Xiang and An (15) proposed a
method (termed “direct phase encoding”) that allows ana-
lytical separation of water and fat for a broader choice of
tn than the original three-point method. An and Xiang (16)
introduced a method for fitting multiple spectral compo-
nents using nonlinear least squares. Ma (17) introduced
an improved two-point method where phase errors due to
field inhomogeneities are corrected using a region-growing
algorithm. Reeder et al. (4) introduced a novel method
for iterative decomposition of water and fat with echo
asymmetry and least squares estimation (IDEAL) where
{fB,q, ρW,q, ρF,q} are estimated independently at each voxel
by an iterative nonlinear least squares fitting procedure.
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The IDEAL method has several desirable properties. For
example, it works for arbitrary echo times and can result in
the maximum-likelihood water/fat decomposition. How-
ever, the original IDEAL method has trouble dealing with
large field inhomogeneities, due to the implicit assumption
that the field inhomogeneity is moderate and the fact that
only local convergence is guaranteed. Several extensions
of IDEAL have been proposed in recent years to address
the problem with large field inhomogeneities. Yu et al.
(18) proposed a region-growing extension of IDEAL where
field map smoothness is imposed by a region-growing pro-
cess initialized with an automatically selected seed voxel.
Tsao and Jiang (19) proposed a multiresolution method to
help guide the selection of the correct decomposition at
each voxel. Lu and Hargreaves (20) developed a method
that combines region-growing and multiresolution by using
region-growing at the coarsest resolution and propagating
the resulting estimates to the finer resolutions.

This article reports a new method to estimate {fB,q, ρW,q,
ρF,q}, for q = 1, . . . , Q, jointly for all the voxels (in con-
trast to voxel-based estimation). Relative to a previous
method presented in Hernando et al. (14) (and applied
in Kellman et al. (3)), this article introduces: (i) a novel
optimization method based on graph cuts, with improved
theoretical properties and practical performance; (ii) a dif-
ferent weighting scheme for the cost function, designed
to address problems with rapid field variations; and (iii)
a novel and more detailed analysis of the spatial resolu-
tion properties of the estimated field map, as well as its
effects on the resulting water/fat images. In the remainder
of this paper, we will describe the proposed method and
show some representative results from challenging cardiac
imaging applications to demonstrate its performance.

THEORY

Joint Estimation of Water/Fat Images and Field Map

Under the usual assumption of white additive Gaussian
noise, the maximum likelihood estimate of {ρW,q, ρF,q, fB,q}
in Eq. [1] is obtained by minimizing the following cost
function at each voxel q (as previously proposed (4,16)):

R0(ρW,q, ρF,q, fB,q; sq)

=
N∑

n=1

∣∣sq(tn) − ei2π fB,qtn
(
ρW,q + ρF,qei2π fFtn

)∣∣2 [2]

where sq = [sq(t1) · · · sq(tN )]T .
However, minimizing R0(ρW,q, ρF,q, fB,q; sq) voxel by voxel

(as is done in conventional voxel-based water/fat sepa-
ration methods) is undesirable because (a) R0(ρW,q, ρF,q,
fB,q; sq) has multiple local and global minimizers (18,20),
and (b) the maximum likelihood estimates from Eq. [2] are
sensitive to noise and often require postestimation smooth-
ing of the field map (4). To address both of these issues,
we minimize R0(ρW,q, ρF,q, fB,q; sq) for q = 1, . . . , Q jointly,
which allows us to impose spatial smoothness on the field
map. Invoking the penalized maximum likelihood frame-
work, we can formulate the estimation of the complete field
map fB = {fB,q}Q

q=1 and water/fat images ρW = {ρW,q}Q
q=1 and

ρF = {ρF,q}Q
q=1 as:

{ρ̂W, ρ̂F, f̂B} = arg min
fB ∈ R

Q

ρW, ρF ∈ C
Q

Q∑
q=1

R0(ρW,q, ρF,q, fB,q; sq)

+ µ

Q∑
q=1

∑
j∈δq

wq,jV (fB,q, fB,j ) [3]

where δq is the local neighborhood of voxel q, µ is a
regularization parameter balancing data consistency and
smoothness of the solution, wq,j are spatially dependent
weights, and V (fB,q, fB,j ) penalizes the roughness of the field
map. In this work, δq is the second-order neighborhood
(which, in two dimensions, includes the eight voxels sur-
rounding q) (21), and a quadratic penalty, V (fB,q, fB,j ) =
(fB,q − fB,j )2, is chosen to promote field map smoothness
(14,22,23). The selection of µ and wq,j is discussed in the
next section.

Optimization Algorithm

Joint estimation of {ρW, ρF, fB} using the penalized maxi-
mum likelihood formulation in Eq. [3] has several signifi-
cant computational challenges:

• High dimension. The space of all possible solutions
has 5Q dimensions because each voxel contains two
complex-valued parameters (ρW,q, ρF,q) and one real-
valued parameter (fB,q). In practice, the solution space
has on the order of 105 dimensions for the datasets
considered in this paper.

• Nonconvexity. The cost function is nonconvex and
presents the usual difficulties of nonconvex optimiza-
tion (e.g., gradient-based methods only guarantee local
convergence and depend heavily on the initialization)
(24).

• Multiple local minima. The cost function has a very
large number of local (and often global) minima due to
the complex exponential form of the signal model (Eq.
[1]). Convergence to suboptimal local minima typically
results in inaccurate water/fat separation (18).

We have developed a novel method to address these chal-
lenges. The proposed method is based on the following key
components: (a) use of variable projection (VARPRO) for
dimensionality reduction, (b) conversion of Eq. [3] to a dis-
crete optimization problem, and (c) use of a novel graph
cut-based algorithm to efficiently solve the discretized
problem. These components are discussed next.

Dimensionality Reduction Using VARPRO

R0(ρW,q, ρF,q, fB,q; sq) has a particular mathematical struc-
ture that lends itself straightforwardly to the VARPRO
formulation. Specifically, the nonlinear parameter fB,q can
be estimated by minimizing (14):

R(fB,q; sq) = ∥∥[
I − �(fB,q)�†(fB,q)

]
sq

∥∥2
2 [4]

where �(fB,q) is a N × 2 matrix with entries [�(fB,q)](n,1) =
ei2π fBtn and [�(fB,q)](n,2) = ei2π (fF+fB,q)tn , for n = 1, . . . , N ,
and † denotes pseudoinverse.

Note that VARPRO effectively isolates the key compo-
nent of water/fat separation: field map estimation. Thus,
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the field map estimate for the regularized problem in Eq.
[3] can be equivalently expressed as:

f̂B = arg min
fB∈RQ

Q∑
q=1

R(fB,q; sq) + µ

Q∑
q=1

∑
j∈δq

wq,jV (fB,q, fB,j ) , [5]

where the dimension of the problem is now reduced to Q.
Estimation of {ρW, ρF} is performed subsequently by solving
the corresponding linear problem at each voxel (Eq. [1]),
which can be done very efficiently (14).

Problem Discretization

R(fB,q; sq) contains many local minima at each voxel, so
gradient-based methods often converge to a suboptimal
solution. This limitation can be overcome by discretizing
the problem (14). The proposed method constrains fB,q to
a discrete set of possible values � = {ψl}L

l=1, where the
ψl are uniformly spaced with spacing 2–4 Hz over a range
±1500 Hz. This spacing was found to introduce only neg-
ligible errors in water/fat separation. The wide range of
� accounts for the potentially very large field inhomo-
geneities that often appear near the edges of the field of
view (FOV), particularly in short, wide-bore scanners. Note
that, for the usual acquisitions with uniformly spaced TEs
(tn = t0 + n�t) (4,13), R(fB,q; sq) is periodic with period
1/�t. In this case, even though � spans ±1500 Hz, it suf-
fices to evaluate R(fB,q; sq) on the interval [0, 1/�t] (20).
Limiting fB ∈ �Q yields the following discrete optimization
problem:

f̂B = arg min
fB∈�Q

Q∑
q=1

R(fB,q; sq) + µ

Q∑
q=1

∑
j∈δq

wq,jV (fB,q, fB,j ) . [6]

Next, we describe a graph cut-based algorithm to solve this
optimization problem.

Solution Using Graph Cuts

The size of the set �Q in Eq. [6] is LQ (i.e., the total num-
ber of possible field maps in the formulation). For typical
image sizes (e.g., 256×256, so Q = 65,536), and discretiza-
tion levels (e.g., L = 1000), LQ = 100065,536. Therefore, the
set �Q is too large for any exhaustive search. This paper
presents an algorithm that subdivides the problem in Eq.
[6] into a sequence of binary decision problems and solves
each of them efficiently using a graph cut algorithm at each
iteration. Specifically, let � be a subset of �Q , defined as:

� = �̂1 × �̂2 × · · · × �̂Q [7]

where �̂q = {f̂B,q, f̂ ′
B,q}, q = 1, . . . , Q are binary sets. We

further assume that f̂B,q is the current field map estimate

at voxel q, and f̂ ′
B,q is a potential update of f̂B,q for the

next iteration. Limiting fB ∈ � yields the following discrete
optimization problem at each iteration:

f̂B = arg min
fB∈�

Q∑
q=1

R(fB,q; sq) + µ

Q∑
q=1

∑
j∈δq

wq,jV (fB,q, fB,j ) . [8]

Even though � is still too large (with size 2Q) for exhaustive
search, Eq. [8] can be solved very efficiently by mapping it
to an equivalent graph cut problem (25–30); details on how
to perform the mapping are provided in the Appendix.

With the graph cut algorithm guaranteeing the global
minimum of Eq. [8], the key to solving Eq. [6] is the design
of � at each iteration (i.e., choosing f̂ ′

B,q). In this work, we
use three different constructions for �, corresponding to
different choices of f̂ ′

B,q:

�β : f̂ ′
B,q = f̂B,q + β

�+: f̂ ′
B,q = min

m

{
f min,m
B,q

}
s.t. f min,m

B,q > fB,q

�−: f̂ ′
B,q = max

m

{
f min,m
B,q

}
s.t. f min,m

B,q < fB,q [9]

where β is a constant, and {f min,m
B,q } is the set of local

minimizers of R(fB; sq) at voxel q. In noise-only voxels
(identified using a threshold on the signal amplitude), the
locations of local minima are meaningless, and thus the
“jumps” corresponding to the separation between local
minimizers in a voxel with a single component are used
in �+ and �−. Note that �β corresponds to a uniform
“jump” with step size β applied to all the voxels (31,32),
whereas �+ and �− correspond to voxel-dependent jumps
(see Fig. 1). In practice, iterations based on �+ and �− pro-
vide rapid convergence to the correct “valley” of R(fB; sq) at
each voxel (their role is similar to the search for the correct
local minima performed in Lu and Hargreaves (20); in prac-
tice, we set the first few, e.g., 15, iterations to be of these
kinds), and iterations based on �β perform fine-tuning. A
simple proof of the equivalence of the proposed iterations
to a graph cut problem (28) is given in the Appendix.

In this work, we employ a randomized scheduling of the
proposed iterations, where, at each iteration, �β (with ran-
dom step size β in the range ±20 Hz), �+ or �− is used (33).
Upon convergence, the solution fB is optimal with respect
to an exponentially large set (33). An example of the evolu-
tion of f̂B in the proposed algorithm is shown in Fig. 2. A key
advantage over previous methods (4,14,18,20) is the abil-
ity to simultaneously update f̂B for arbitrary sets of voxels,
thus enabling the proposed algorithm to escape suboptimal
solutions, where methods that consider one voxel at a time
may be trapped.

Selection of the Regularization Parameters µ and wq,j

Selection of the regularization parameter µ and the spatial
weights wq,j is based on the resolution properties of the
estimated field map. In this work, the weights are set to:

wq,j = min


 ∂2R(fB,q; sq)

∂f 2
B,q

∣∣∣∣∣
fB,q=f min

B,q

,
∂2R(fB,j ; sj)

∂f 2
B,j

∣∣∣∣∣
fB,j=f min

B,j




[10]

where f min
B,q is the minimizer of R(fB,q; sq), for q = 1, . . . , Q.

This choice is obtained by approximating R(fB,q; sq) by
a quadratic function near its minimizer and results in
approximately uniform spatial smoothing of the field map
(34). The second derivatives in Eq. [10] are easily approxi-
mated after the discretization. The degree of smoothing is
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FIG. 1. Example of R(fB; sq) at an
individual voxel. Note the noncon-
vexity of R(fB; sq), which contains
multiple local minimizers, and no
unique global minimizer. Given
f̂B,q as the current field inhomo-
geneity estimate at voxel q, �̂q =
{f̂B,q, f̂ ′

B,q} is the binary set for �

in the proposed algorithm. There
are three choices for f̂ ′

B,q, corre-
sponding to �+, �−, and �β (with
f̂ ′
B,q = f̂B,q + β).

then determined by µ, which is empirically set to 0.02 for
all the datasets processed in this work. The effect of varying
µ is analyzed in the Discussion section.

Advanced Signal Models

In addition to the standard signal model (Eq. [1]), the
proposed method can easily be extended to handle more
advanced signal models:

• T*
2 decay. The presence of significant T*

2 decay can
severely bias the estimates of the water/fat images, if
not included in the signal model. Generally, the water

and fat components in a given voxel experience differ-
ent T*

2 decay rates. However, estimating two separate
decay rates significantly increases noise sensitivity.
Even though separate rates can be estimated with more
images (35), it is common to model the decay by a
single decay rate R*

2,q = 1/T*
2 at each voxel q. The

corresponding signal model becomes (11,36–39):

sq(tn) = e−R*
2,qtn ei2π fB,qtn

(
ρW,q + ρF,qei2π fFtn

)
,

for n = 1, . . . , N . [11]

FIG. 2. Results to illustrate
convergence of the proposed
method. (Top) Estimated field
map at several iterations. (Center)
Corresponding water images.
(Bottom) Corresponding fat
images. The ability of the graph
cut algorithm to update a large
set of voxels at any iteration
results in rapid convergence
of the proposed method, even
in the presence of large field
inhomogeneities. Additionally,
no complicated initialization
heuristics are necessary (the field
inhomogeneity map can simply
be initialized to zero).
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The above signal model can easily be included in the
proposed method by redefining R(fB,q; sq) as:

R(fB,q; sq) = min
R*

2,q ∈ R

ρW,q, ρF,q ∈ C

N∑
n=1

∣∣sq(tn)

− e−R*
2,qtn ei2π fB,qtn

(
ρW,q+ρF,qei2π fFtn

)∣∣2,
[12]

where {ρW,q, ρF,q} can be removed using VARPRO, and
the minimization with respect to R*

2,q is performed by
discretizing the R*

2,q values (note that estimation of R*
2

does not present the same difficulty as fB, associated
with the multitude of local minima). Therefore, the
field map estimation algorithm, which depends only
on R(fB,q; sq), remains unchanged (36).

• Multipeak fat model. This model allows the fat signal
to have M distinct peaks (often, M = 3). As a result,
the signal at voxel q can be expressed as (39,40):

sq(tn) = ei2π fB,qtn

(
ρW,q + ρF,q

M∑
m=1

αm,qei2π fF,mtn

)
,

for n = 1, . . . , N , [13]

where |α1,q| + |α2,q| + · · · + |αM ,q| = 1 for q = 1, . . . , Q,
and {fF,m}M

m=1 are the (known) frequency shifts of the
M individual fat peaks.

This model requires N ≥ M + 2 acquisitions to esti-
mate fB,q, ρW,q and {ρF,qαm,q}M

m=1, which may not be
practical. Alternatively, we may assume that {αm,q}M

m=1
are known (or calibrated from the data themselves)
and αm,q = αm for q = 1, . . . , Q. Under this assump-
tion, the multipeak model (Eq. [13]) contains the same
number of unknown parameters as the original signal
model in Eq. [1], so N = 3 acquisitions are sufficient to
perform the separation (12,37,41). Since the only non-
linear parameter in the multipeak model is the field
map, the proposed method applies naturally to this
model. The only modification necessary is substitut-
ing the second column in �(fB,q) by the corresponding
linear combination of fat peaks from Eq. [13].

MATERIALS AND METHODS

Data for quantitative evaluation were acquired on a
Siemens Magnetom Espree (Siemens AG Medical Solu-
tions, Erlangen, Germany) 1.5-T scanner using a phased-
array coil, in accordance with the local institutional review
board. Twenty-five cardiac datasets were acquired (from
21 subjects), of which 15 were short-axis slice orientation
and 10 were long-axis orientation. Imaging was performed
with an ECG-triggered GRE sequence, using an echo-train
with monopolar readout. Typical parameters included FOV
= 36 cm × 27 cm; bandwidth = 977 Hz/pixel; pulse repe-
tition time = 11.2 ms; flip angle = 20◦ to 25◦; matrix size
= 256 × 126, TE spacing between 1.9 ms and 3.07 ms (3).
Usually four echoes were collected (often selected to pro-
vide nearly optimal noise properties (13)), but only three
are used in this work, to conform more closely to the com-
mon conditions used in water/fat separation (4,10). One

additional dataset, not included in the quantitative results,
was acquired on a Siemens Avanto 1.5-T scanner with TEs
{3.6, 5.8, 7.9}ms.

The proposed algorithm was run on each of the acquired
two-dimensional slices, for 50 iterations in all cases,
at which point the changes in the estimated field map
were negligible. Multicoil data were processed jointly, as
described in Hernando et al. (14). In order to evaluate
the reliability of the proposed method, water/fat separa-
tion was performed on 25 cardiac datasets acquired with
various slice orientations. Three echoes (N = 3) were
used for each dataset. For comparison, the same datasets
were also processed using a previously proposed method,
based on VARPRO and the iterated conditional modes
(ICM) algorithm, where the voxels are updated one at a
time (14). Both methods included T*

2 decay in the signal
model. By visual inspection of the resulting decomposi-
tions, we counted the number of images containing errors
(e.g., localized water/fat swaps). These swaps are defined
as estimation errors where the main signal component in a
voxel is assigned to the wrong chemical species (e.g., iden-
tifying as mostly fat a voxel that contains mostly water).
Additionally, some of the datasets were processed using
our own implementation of the voxel-independent IDEAL
algorithm (without region growing or any other advanced
features that may have been added to the current commer-
cial implementation) (4). Note that the data used in the
comparison have a different set of TEs from those suggested
in Reeder et al. (4) and Pineda et al. (13). The TEs employed
in this work are not signal-to-noise-ratio optimal (which
would require a TE spacing of nearly 1.6 ms at 1.5 T) due
to the monopolar readout with gradient flyback.

RESULTS

For short, wide-bore scanners, the field variation at the edge
of the FOV was found to be on the order of ±1000 Hz. The
central FOV excluding the border was more well behaved.
Nevertheless, the frequency variation across the heart was
in the range of 100–150 Hz. This variation may be due to
tissue-air interfaces (42) or the presence of deoxygenated
blood in large epicardial veins (43). The central FOV was
identified on a per-slice basis as the region having field
inhomogeneities in the range ±300 Hz. Fat and water swaps
using the ICM method were observed in 18 of the 25 cases,
with five occurring in the central FOV. Fat and water swaps
using the graph cut method were observed in two slices of
the 25 cases, with a single fat/water swap in the central
FOV, in a region of low signal.

Figure 3 shows representative results from a sagittal
view of the heart, comparing the proposed method, ICM,
and voxel-independent IDEAL. Images were acquired with
TEs {4.2, 6.7, 9.2}ms. Since the original IDEAL method did
not include T*

2 decay, the modified algorithm T*
2 -IDEAL

was used (11). It must be noted that the water/fat images
obtained with voxel-independent T*

2 -IDEAL were simi-
lar to a voxel-independent VARPRO, where ambiguities
are resolved by forcing the field map to be in the range
(−fF/2, fF/2). For this reason, these results are denoted
simply “voxel-independent” in the figures. The proposed
method provided significantly improved results, particu-
larly in regions with rapid field variations, where previous
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FIG. 3. Comparison of the pro-
posed method with two previ-
ously proposed methods (ICM
and voxel independent). This
dataset contains large field inho-
mogeneities near the edges of the
FOV. (Top) Estimated field maps
(in Hz). (Center) Water images.
(Bottom) Fat images. The pro-
posed method produced accu-
rate field map estimation through-
out the FOV, providing uniformly
good water/fat separation. Pre-
vious methods were not able
to track the field variations in
the regions of high inhomogene-
ity, resulting in incorrect water/fat
separation (indicated by arrows).
Note that the field inhomogene-
ity reached +/- 1000 Hz, but the
color scale was kept in the range
+/- 600 Hz to show better contrast
throughout most of the image.

methods produced water/fat swaps. Even though the heart
was the region of interest in this application, artifacts in
other areas of the FOV are undesirable since they may
erroneously lead to incidental findings.

Figure 4 shows another case, acquired on a Siemens
Avanto 1.5-T scanner with TEs {3.6, 5.8, 7.9}ms. Note that
both ICM and the voxel-independent method produced
water/fat swaps in the central FOV (see arrows), whereas
the proposed method produced much better water/fat
decomposition throughout the FOV.

Figure 5 shows multipeak fat modeling results from a
13-point acquisition with echo spacing 1.9 ms (with the
first TE at 1.4 ms), using M = 3 fat peaks with known
frequency shifts {−210, −159, 47}Hz at 1.5 T. An indepen-
dent decomposition of the three fat peaks and the water
peak was performed using all 13 TEs. Water/fat decom-
positions with multipeak and single peak fat modeling,
respectively, were obtained from the first five TEs. All
cases were processed accounting for T*

2 decay. For the
multipeak decomposition, the relative amplitudes αm were

estimated from the data themselves (as proposed in Yu et
al. (37) under “self-calibration for 6-point T*

2 -IDEAL acqui-
sitions”), and were found to be α1 ≈ 0.77, α2 ≈ 0.13e−i0.08π ,
and α3 ≈ 0.10e−i0.04π . Additionally, the αm,q obtained with
the independent peak model were averaged over the fat
region, and the results were in good agreement with the
multipeak estimates (the averages of the independent peak
model produced α1 ≈ 0.77, α2 ≈ 0.13ei0.06π , and α3 ≈
0.10e−i0.12π ). Multipeak modeling has two main advantages
over single peak modeling (see the arrows in Fig. 5): (a)
improved water/fat separation, which is clearly noticeable
in fat-only regions (e.g., the subcutaneous fat layer), and (b)
reduced ambiguity in the estimation (37).

Water/fat separation is useful for tissue characterization
in cardiac MRI, where it has been shown to allow robust
detection of fibrofatty infiltration of the myocardium (1,3),
as well as characterization of tumors and masses, includ-
ing lipomas. Figure 6 shows results from a patient with
intramyocardial fat, which was processed previously using
ICM (3), reconstructed here using the proposed graph cut
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FIG. 4. Comparison of the
proposed method with two pre-
viously proposed methods (ICM
and voxel independent). In this
dataset, field inhomogeneities
near the edges of the FOV are
relatively moderate because it
was not acquired on a wide-
bore scanner. (Top) Field maps.
(Center) Water images. (Bottom)
Fat images. ICM and voxel-
independent methods resulted
in water/fat swaps (indicated by
arrows) in the liver under the
dome of the diaphragm, as well
as in the subcutaneous fat, but
the proposed method produced
good water/fat separation.

method. Images were acquired with TEs {1.5, 3.6, 5.7}ms.
The separation was performed including multipeak mod-
eling of the fat signal, as well as T*

2 decay. The intramy-
ocardial fat is clearly visible in the fat-only image (Fig. 6b),
which has positive contrast (i.e., fat against dark back-
ground) but is difficult to detect in the conventional
fat-saturated turbo spin echo image (Fig. 6d), which has
negative contrast (3). Figure 7 shows another example
application. Images were acquired from a three-chamber
view using TEs {2.5, 4.7, 7.0, 9.2}ms. The water/fat sepa-
rated images (Fig. 7a and 7b, respectively) clearly show a
large lipoma.

One desirable feature of the proposed penalized maxi-
mum likelihood formulation is our ability to characterize
the spatial resolution properties of the estimates. This is
important in order to improve confidence in our results, as
well as to provide a criterion for choosing the regularization
parameter. In the case of field map estimation, it is desirable
to know the amount of smoothing introduced by the spatial
regularization. Even though a complete characterization is
challenging due to the nonlinearity of the signal model,
one can analyze the local properties of the estimation by
calculating the local impulse response (LIR), as derived
in Fessler and Rogers. (34). The LIRq(fB) is defined as the
change in the mean estimated field map caused by a pertur-
bation in the true field map fB at voxel q. The expression for
the LIRq(fB) is given in Eq. [16] of Fessler and Rogers. (34).
Evaluation of this expression for Eq. [5] can be done effi-
ciently by using a quadratic approximation of R(fB; sq) at
each voxel (since the regularization is also quadratic, this
leads to a closed-form solution). The quadratic approxima-
tion is shown in Fig. 8a. Figure 8b shows an example of
the LIRq(fB) at two different voxels for the dataset shown
in Fig. 5.

To study the field map smoothing introduced by the spa-
tial regularization, we simulated a dataset where the field

map contained an abrupt transition. Subsequently, field
map estimation was performed using several values of the
regularization parameter µ. Results demonstrating differ-
ent levels of smoothing as a function of µ are shown in Fig.
8c-d. As can be seen from the figure, spatial regularization
with µ = 0.02 (the value used in this work) results in only
moderate smoothing, which is important in regions of rapid
field variation. Errors in the field map result in inaccurate
water/fat separation, which is shown quantitatively by sim-
ulation in Fig. 8d. Note that the abrupt field map transition
used in the simulation is more severe than the field maps
observed in practice across the heart (43). It is expected that
even with a worst-case gradient of 15 Hz/pixel, based on
experimental measurements within the heart, a frequency
error <3 Hz would result using regularization with param-
eter µ = 0.02, corresponding to an erroneous fat signal
with amplitude equal to 2% of the water signal (Fig. 8e). In
this case, with a water signal-to-noise ratio in the range of
20, the artifactual fat signal would be well below the noise
level.

In the proposed algorithm, the bulk of the computation
time is spent solving Eq. [8] (via the equivalent graph cut
problem) at each iteration. On an Intel Xeon-based desktop
personal computer with 48 GB of random-access mem-
ory and a 3.16 GHz central processing unit, solving this
problem at each iteration requires 0.3 sec for images of
size 192 × 144 and 0.9 sec for images of size 192 × 256
(image sizes from the results shown in this paper). A mod-
erate number of iterations suffices to produce good results:
the field map estimate converges rapidly and the improve-
ments are negligible after 50 iterations for all the datasets
processed in this work. The total processing time for the
proposed algorithm is typically around 60 sec (90 sec if
the model includes T*

2 ). Additionally, the proposed method
can be parallelized to improve speed (33).
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FIG. 5. Multipeak fat modeling. Data were acquired at 13 TEs, with
uniform spacing 1.9 ms. The presence of several fat peaks in the
signal is shown by performing an independent fit (without fixing αm,q)
using all 13 TEs. The data corresponding to the first five TEs are then
processed using a multipeak model and the standard single peak
model (both including T2* decay). Multipeak modeling results in better
water/fat separation, particularly in the regions with high fat signal
such as the subcutaneous layer (see arrows in single peak water
image). Additionally, the multipeak model helps resolve ambiguities
in isolated signal regions (see arrow in single peak fat image).

DISCUSSION

Field map estimation is a critical step for accurate water/fat
separation. However, the problem is severely ill posed
when voxels are considered individually, which makes
spatial regularization necessary. This has led to a variety
of methods that impose field map smoothness, e.g., using
multiresolution or region-growing algorithms (17–20). The
proposed method has two main desirable properties: (i)
the use of a penalized maximum likelihood formulation
that allows a local characterization of the spatial resolution
(smoothing) properties of the resulting field map; and (ii)
the introduction of a novel optimization algorithm based on
graph cuts, which allows the update of field map estimates
at all the voxels simultaneously. This is quite different from
algorithms where voxels are visited one at a time, even
if information from previously visited voxels is used to
constrain/initialize the estimate at the current voxel.

For the datasets considered in this work, it is important
that the regularization term be spatially varying (there is an
effective weighting based on local signal intensity, imposed
through the wq,js in Eq. [3]) because of the widely varying
signal intensities observed in different regions of the image.
If the wq,js were constant, then it would not be possible
to achieve regularization in the high signal regions with-
out oversmoothing the field map in the low signal regions.
The effect of spatially varying regularization can be well
characterized using the LIR.

The performance of the proposed method depends on the
accuracy of the signal model. For instance, the presence of
T*

2 decay or multiple fat peaks can, if not accounted for,
result in not only small perturbations on the water/fat esti-
mates but also water/fat swaps. Additionally, multipeak
fat modeling reduces the ambiguity in water/fat separa-
tion because the water and fat signals become different
in this improved model (instead of being the same signal
model with different frequency shift) (37). These effects are
observed clearly in Fig. 5.

It must be noted that, in addition to the voxel-
independent and ICM-based methods shown in this article,
there are several recent methods that impose spatial con-
straints on the field map to improve water/fat separation
(18–20,23). A comparative study with these recent methods
is beyond the scope of this article (such a study should be
performed involving the different research groups, so that
the comparison is fair and accurate). This article is focused
on comparing the proposed method to voxel-independent

FIG. 6. Results showing the application of the proposed method for
the detection of fatty infiltration in the myocardium. a,b: Water/fat
images obtained with the proposed method. The fatty infiltration is
clearly visible in the fat image. c: Standard turbo spin echo acquisi-
tion, without fat saturation. d: turbo spin echo including conventional
fat saturation. The fatty infiltration appears as a decrease in inten-
sity in the fat-saturated image but is difficult to discern due to the
negative contrast.
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FIG. 7. Example of lipoma in
the anteroseptal region of the
myocardium, seen clearly in
cardiac three-chamber view. a:
Water image. b: Fat image.

separation and ICM to highlight two important points: (i)
the need for spatial regularization of the field map, which
is well addressed using a joint estimation approach; and
(ii) the advantage of considering all voxels simultaneously
when solving the joint estimation problem.

The proposed method has several limitations. First, it
provides a locally (as opposed to globally) optimal solu-
tion to Eq. [6] (it is optimal with respect to an exponentially
large set). Perhaps surprisingly, the globally optimal solu-
tion to Eq. [6] can also be found in polynomial time
using graph cut methods. As shown in Ishikawa (44), the
solution can be achieved by solving a graph cut prob-
lem on a different graph (larger than the ones used in
the proposed method). This result holds as long as the
regularization functional V (fB,q, fB,j ) is convex. Direct appli-
cation of the method proposed in Ishikawa (44) to Eq. [6]
requires the manipulation of a very large graph (contain-
ing on the order of QL2 edges if V is quadratic), making
it less practical for realistic problem sizes. However, we
have implemented it for a penalty V (fB,q, fB,j ) = |fB,q − fB,j |,
which requires a smaller graph (on the order of QL edges),
resulting in good water/fat separation (results not shown).
Even though a quadratic penalty is more appropriate for
field map estimation, it is remarkable that this type of
high-dimensional, nonconvex cost function can be glob-
ally optimized (in its discretized version) with an efficient
algorithm.

Second, the discretization required for applying the pro-
posed graph cut algorithm imposes a limit on the accuracy
of the estimated field map. Even though the discretization
is fine enough that we have not found it to be significant,
it can be overcome by running a descent algorithm (such
as the one proposed in Huh et al. (23)), initialized with the
outcome of the proposed method.

Third, the proposed method uses a penalized maximum
likelihood formulation (Eq. [3]) to regularize the field map
estimate by penalizing nonsmooth solutions. This regular-
ization is useful and has desirable properties in terms of
characterizing its resolution properties, as discussed above.
However, it is only a crude model if viewed as imposing a

prior distribution on the field map. For instance, in regions
of extremely rapid field variation (such as when imaging
near metal implants), this smoothness assumption would
not be adequate, and the corresponding image distortions
would make the current signal model inaccurate.

Extension of the proposed graph cut method to han-
dle three-dimensional datasets is conceptually straightfor-
ward. Field map smoothness can be imposed along all three
dimensions by using a three-dimensional neighborhood
δq at each voxel q in the dataset (see Eq. [3]). However,
computational requirements may make a multiresolution
approach more practical in the three-dimensional case
(19,20). This extension is currently under investigation.

In MRI, there is a variety of applications requiring the
regularized estimation of nonlinear parameters (e.g., relax-
ation rates, amplitude of radio frequency field) (45,46). The
method presented in this paper, based on VARPRO fol-
lowed by a graph cut optimization algorithm, may also
prove useful in these scenarios. The most important restric-
tion on the proposed method is that the data term of the
cost function is defined voxel by voxel (or, at least, that the
interactions between different voxels are very limited (30)).
In this case, the proposed optimization method provides a
powerful tool for overcoming the nonlinearity of the model
and the nonconvexity of the cost function (29).

CONCLUSION

This paper has presented a novel method for robust
water/fat separation in the presence of large field inhomo-
geneities. The proposed method uses a statistically moti-
vated formulation and solves the underlying optimization
problem by subdividing it into a sequence of binary deci-
sion problems, which are solved efficiently using a graph
cut algorithm. The method has good theoretical properties
and has been shown to perform robustly in a number of
challenging cardiac imaging studies. With these capabil-
ities, it should prove particularly useful for the clinical
applications where large field inhomogeneities currently
prevent reliable water/fat separation.
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FIG. 8. Analysis of the spatial resolution properties of the proposed regularized field map estimate, and the associated errors in the water/fat
decomposition. a: Residue R(fB,q; sq) at an individual voxel and local approximation using a quadratic function. b: LIR for field map per-
turbations at different locations (shown in logarithmic scale over the true field map). c: Simulation demonstrating the field map smoothing
that results from different values of µ. The true field map contains a sharp jump in the center of the image. In this work, we use µ = 0.02.
d: Absolute field map errors corresponding to varying values of µ in the previous example. e: Errors in the estimation of the water/fat
magnitudes at a single voxel, as a function of the error in the field map (in the absence of noise). The simulated TEs are {6.76, 8.36, 9.96}ms.
The true water/fat amplitudes are ρW = 1, ρF = 0.
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APPENDIX: CONVERSION OF EQ. [8] TO A
GRAPH CUT PROBLEM

Recall the definition of the subset � ⊂ �Q for the optimiza-
tion problem in Eq. [8]: � = �̂1 × �̂2 × · · · × �̂Q , where
�̂q = {f̂B,q, f̂ ′

B,q}, q = 1, . . . , Q. The necessary and sufficient
condition for graph-representability (i.e., the existence of
an equivalent graph cut problem that can be efficiently
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FIG. A1. Example of graph used in this work, including a graph cut.
The number of vertices in the graph is Q+2, i.e., one vertex per voxel
in the corresponding image, plus two additional vertices s (source)
and t (sink). The edge weights dqj are determined by the cost function
and the set � of possible field maps.

solved) of Eq. [8] was derived in Kolomogorov and Zibah
(28) and can be stated as:

V (f̂B,q, f̂B,j ) + V (f̂ ′
B,q, f̂ ′

B,j ) ≤ V (f̂ ′
B,q, f̂B,j ) + V (f̂B,q, f̂ ′

B,j ) [14]

for q = 1, . . . , Q, j ∈ δq. Clearly, in our problem graph rep-
resentability depends only on the regularization penalty
function V (fB,q, fB,j ) and the choice of f̂ ′

B,q.
For a quadratic penalty V (fB,q, fB,j ) = (fB,q − fB,j )2, we can

easily show that any choice of � where f̂ ′
B,q − f̂B,q has the

same sign for all voxels q = 1, . . . , Q (as is the case for the
proposed iterations �β , �+ and �−), is graph representable.
Denoting �0 = f̂B,q − f̂B,j , �q = f̂ ′

B,q − f̂B,q, and �j = f̂ ′
B,j − f̂B,j ,

then Eq. [14] will be satisfied if

(�0 + �q)2 + (�0 − �j )2 − �2
0 − (�0 + �q − �j )2 > 0 [15]

i.e., if �q�j > 0 (or equivalently, if �q and �j have the same
sign). Therefore, the iterations employed in this paper are
graph representable.

To construct an the equivalent graph for Eq. [8] (see
Fig. A1), we assign to each voxel one vertex vq, plus one
source (s) and one sink (t) vertex. Thus, the total number
of vertices is Q + 2. The edges of the graph, account-
ing for R(fB,q; sq) (called data edges) and the regularization
term (called regularization edges) in Eq. [8], are defined as
follows (28):

• Data edges. R(fB,q; sq) generates one edge for each voxel

q. This edge is (s, vq) with weight dsq = R(f̂B,q; sq) −
R(f̂ ′

B,q; sq) if R(f̂B,q; sq) − R(f̂B,q′; sq) > 0, and (vq, t) with

weight dqt = R(f̂ ′
B,q; sq) − R(fB,q; sq) otherwise.

• Regularization edges. Each term V (f̂B,q, f̂B,j ) generates
three edges (if a data edge already exists, the new
weight is added to the existing weight). Defining
Aq = V (f̂ ′

B,q, f̂B,j ) − V (f̂B,q, f̂B,j ) and Aj = V (f̂B,q, f̂ ′
B,j ) −

V (f̂B,q, f̂B,j ), the following edges are added:

• Edge (s, vq) with weight dsq = Aq if Aq > 0, or edge
(vq, t) with weight dqt = −Aq otherwise.

• Edge (s, vj ) with weight dsj = Aj if Aj > 0, or edge
(vj , t) with weight djt = −Aj otherwise.

• Edge (vq, vj ) with weight

dqj = V (f̂ ′
B,q, f̂B,j ) + V (f̂B,q, f̂ ′

B,j )

− V (f̂B,q, f̂B,j ) − V (f̂ ′
B,q, f̂ ′

B,j ).

As formulated, the solution to Eq. [8] is given by the
minimum cut problem (28). Note that cut C of a graph is
a partition of the vertices of the graph into two disjoint
subsets, S and T , such that s ∈ S and t ∈ T . Every remain-
ing vertex is either in S or in T (see Fig. A1). The cost |C|
of C is defined as:

|C| =
∑

q∈S,j∈T
dqj . [16]

The minimum cut problem is defined as solving:

Cmin = arg min
C

|C|, [17]

which can be solved with worst-case complexity O(Q3) for
the graph defined above (26).
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