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OBJECTIVES The aim of this study was to determine whether early gadolinium enhancement (EGE) by cardiac magnetic

resonance (CMR) in a canine model of reperfused myocardial infarction depicts the area at risk (AAR) as determined by

microsphere blood flow analysis.

BACKGROUND It remains controversial whether only the irreversibly injured myocardium enhances when CMR is

performed in the setting of acute myocardial infarction. Recently, EGE has been proposed as a measure of the AAR in

acute myocardial infarction because it correlates well with T2-weighted imaging of the AAR, but this still requires

pathological validation.

METHODS Eleven dogs underwent 2 h of coronary artery occlusion and 48 h of reperfusion before imaging at 1.5-T. EGE

imaging was performed 3 min after contrast administration with coverage of the entire left ventricle. Late gadolinium

enhancement imaging was performed between 10 and 15 min after contrast injection. AAR was defined as myocardium

with blood flow <2 SD from remote myocardium determined by microspheres during occlusion. The size of infarction was

determined with triphenyltetrazolium chloride.

RESULTS There was no significant difference in the size of enhancement by EGE compared with the size of AAR by

microspheres (44.1 � 15.8% vs. 42.7 � 9.2%; p ¼ 0.61), with good correlation (r ¼ 0.88; p < 0.001) and good

agreement by Bland-Altman analysis (mean bias 1.4 � 17.4%). There was no difference in the size of enhancement

by EGE compared with enhancement on native T1 and T2 maps. The size of EGE was significantly greater than the

infarct by triphenyltetrazolium chloride (44.1 � 15.8% vs. 20.7 � 14.4%; p < 0.001) and late gadolinium enhancement

(44.1 � 15.8% vs. 23.5 � 12.7%; p < 0.001).

CONCLUSIONS At 3 min post-contrast, EGE correlated well with the AAR by microspheres and CMR and was

greater than infarct size. Thus, EGE enhances both reversibly and irreversibly injured myocardium. (J Am Coll Cardiol Img
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ABBR EV I A T I ON S

AND ACRONYMS

AAR = area at risk

CMR = cardiac magnetic

resonance

ECV = extracellular volume

EGE = early gadolinium

enhancement

IQR = interquartile range

LGE = late gadolinium

enhancement

PSIR = phase-sensitive

inversion recovery

TTC = triphenyltetrazolium

chloride
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marker of area at risk (AAR) in a clinical
setting (2,3). These findings are intriguing
and are supported by previous work that
found overestimation of infarct size by
gadolinium-enhanced imaging (4–6). To
further validate the correlation between
EGE and AAR, comparison of EGE to a patho-
logical reference standard for the AAR is
necessary. Furthermore, the previous studies
of the correlations between EGE and T2-
weighted AAR assessment were performed
on a single slice per patient. How well EGE
performs on a whole-heart basis has yet to
be determined.

The aim of this study was to examine the

relationship between the size of EGE and pathological
standards of AAR and infarct size by use of a phase-
sensitive inversion recovery (PSIR) sequence that
images the entire left ventricle minutes after contrast
administration in a canine model of acute myocardial
infarction. How well the size of EGE compared with
CMR measures of the AAR (quantitative native T1 and
T2 maps) was also determined, because these mo-
dalities have shown good correlation to the patho-
logical AAR (7).

METHODS

ANIMAL MODEL. Mongrel dogs weighing 15 to 20 kg
were studied after approval by the Animal Care and
Use Committee of the National Heart, Lung, and
Blood Institute of the National Institutes of Health.
Animals were pre-treated with amiodarone (6 mg $

kg�1 $ day�1) for 1 week to minimize arrhythmia dur-
ing ischemia. Anesthesia was induced with a mixture
of intramuscular midazolam 0.4 mg/kg and hydro-
morphone 0.1 mg/kg, followed by intravenous pro-
pofol (2 to 6 mg/kg). General anesthesia was
maintained during surgery after intubation with 2%
to 5% inhaled sevoflurane. Intravenous and arterial
lines were established, as well as a permanent left
atrial catheter for administration of microspheres.
After thoracotomy at the left fifth or sixth intercostal
space, the left anterior descending artery was isolated
and a snare placed distal to the first diagonal branch.
Collateral vessels were not tied off. During occlusion,
approximately 5 � 106

fluorescent microspheres (IMT
Laboratories, Irvine, California) were administered
with simultaneous reference blood sampling from an
arterial line. The snare was released after 120 min of
occlusion. After surgery, the animals were monitored
and treated for pain control and hemodynamic sta-
bility by trained animal care personnel for 48 h before
CMR. Animals were anesthetized before imaging as
described previously. Immediately before CMR, 5 �
106

fluorescent microspheres of a different color were
administered to assess the quality of reperfusion. All
animals were euthanized on completion of imaging
with an overdose of potassium chloride under general
anesthesia.

CMR IMAGING. Imaging was performed on a 1.5-T
clinical scanner (MAGNETOM Avanto, Siemens
Healthcare Sector, Erlangen, Germany) with an 8-
channel phased-array coil. Quantitative native T1
mapping was performed with a motion-corrected
modified Look-Locker inversion-recovery sequence,
with image acquisition 5 s after the first inversion
followed by a 3-s pause and 3 s of acquisition after the
second inversion, and steady-state free-precession
readout. The following typical imaging parameters
were used: field of view 280 �154 mm2; matrix 192 �
80; slice thickness 6 mm; voxel size 1.9 � 1.5 � 6
mm3 ¼ 17 ml/voxel; repetition time 2.6 ms; echo time
1.1 ms; and parallel imaging factor 2. Quantitative
native T2 mapping was performed with a fast low-
angle shot readout sequence and T2 preparations at
5, 40, and 80 ms. Typical parameters were as follows:
field of view 280 � 154 mm2; matrix 192 � 80; slice
thickness 6 mm; voxel size 1.9 � 1.5 � 6 mm3; repe-
tition time 4 ms; echo time 1.6 ms; and parallel im-
aging factor 2.

EGE imaging was performed 3 min after admin-
istration of a 0.2 mmol/kg intravenous bolus of
contrast (gadopentetate dimeglumine [Magnevist],
Bayer Healthcare Pharmaceuticals, Wayne, New
Jersey). To achieve whole-heart coverage at this time
point, images were acquired every other heartbeat
with an electrocardiography-triggered, breath-held,
PSIR single-shot sequence and steady-state free-
precession readout. Nine slices were obtained in 18
heartbeats. Typical parameters were as follows: field
of view 280 � 154 mm; matrix 192 � 80; voxel size
1.9 � 1.5 � 6 mm3; 50� flip angle; repetition time 3 ms;
echo time 1.5 ms; parallel imaging factor 2; and
inversion time 200 ms.

Standard LGE images were acquired >10 min after
contrast injection with an electrocardiography-gated,
segmented, PSIR fast low-angle shot readout
sequence (8) with the following typical parameters:
field of view 280 � 156 mm; matrix 256 � 108; voxel
size 1.5 � 1.1 � 6 mm3; 10 ml/voxel; 25� flip angle;
repetition time 8.5 ms; echo time 3.3 ms; and parallel
imaging factor 2. The inversion time was manually
adjusted to null normal myocardium.

PATHOLOGY AND MICROSPHERE ANALYSIS. After
explantation, hearts were set in 2% agarose gel, sliced
on a commercial meat slicer in 3-mm-thick slices, and



FIGURE 1 Slice-by-Slice Comparison From 1 Animal of EGE and LGE Compared With

Infarct by Pathology

Short-axis stack was aligned from base (left) to apex (right) for quantification of

enhancement. The extent of EGE (upper row) exceeded that of LGE (middle row) and TTC

(bottom row) in all slices. EGE ¼ early gadolinium enhancement; LGE ¼ late gadolinium

enhancement; TTC ¼ triphenyltetrazolium chloride.

FIGURE 2 Area at Risk and Infarct Measures by Pathology and

Cardiac Magnetic Resonance
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stained with 1% triphenyltetrazolium chloride (TTC)
for infarct demarcation and subsequently photo-
graphed. TTC images were matched to CMR images by
use of landmarks such as papillary muscles and the
right ventricular insertion point, blinded to the
microsphere blood flow results. For whole-heart
coverage, a basal TTC slice and apical TTC slice were
matched to corresponding CMR images, and all slices
in that range were included in the analysis. The bor-
ders of endocardium, epicardium, and nonstained
areas were manually delineated to determine infarct
size as a percentage of the left ventricle. Additionally,
a slice-by-slice comparison of the AAR by micro-
spheres and by EGE was performed. In this compari-
son, only the slices that could be matched to an image
were included. A representative example is depicted
in Figure 1.

Two consecutive TTC slices were combined for
further transmural sectioning and microsphere anal-
ysis to achieve the same slice thickness as the CMR
images. The myocardium of the left ventricle was
sectioned into transmural radial sectors. Sectors in
the infarcted area (defined by TTC) were further
sectioned into an endocardial and epicardial section.
Having an endocardial section that was clearly TTC
positive allowed making measurements within the
core of the infarct that were not contaminated by
partial volume errors with salvaged myocardium
closer to the epicardium. This minimized partial vol-
ume effects. A few sectors of normal myocardium
were also split into endocardial and epicardial sub-
sections. Each myocardial sector weighed approxi-
mately 0.7 g, to ensure a sufficient number of
microspheres per sector for reliable analysis. Tissue
samples were sent to an external laboratory for
myocardial blood flow determination (IMT Labora-
tories). Myocardial sectors with blood flow <2 SD
below blood flow in remote myocardium were defined
as AAR. The summed weight of AAR sectors was
divided by the total left ventricular mass.
IMAGE ANALYSIS. Image analysis was performed
with a custom in-house software program. Endocar-
dial and epicardial borders were manually delineated.
Hyperenhancement on EGE images, as well as native
T1 and T2 maps, was defined as pixels with signal
intensities >2 SD from remote myocardium for semi-
automatic quantification. Spurious noncontiguous
pixels were excluded. Hypoenhanced pixels within
an area of hyperenhancement (regions of microvas-
cular obstruction or hemorrhage) were included as
infarcted pixels in the hyperenhanced area.

On LGE images, infarct was defined as areas of
enhancement based on the feature analysis and
combined thresholding computer algorithm, which



FIGURE 3 Per-Animal Comparison of EGE and AAR by Microspheres
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The size of enhancement on EGE images correlated very well to the size of AAR by microsphere analysis (scatterplot) (left), with minimal

systematic bias on the Bland-Altman plot (right). Dotted lines represent line of identity in scatterplot and mean � 2 SD in Bland-Altman plot.

AAR ¼ area at risk; other abbreviation as in Figure 1.
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was validated previously by pathology (9). Enhance-
ment on CMR images was presented as a percentage
of the entire left ventricular myocardium. Whole-
heart coverage was used to minimize partial volume
effects, potential misregistration, and ex vivo
shrinking of the myocardium for comparisons to
pathological infarct sizing by TTC.
STATISTICAL ANALYSIS. Statistical analysis was
performed with MedCalc version 12.7.7 (Ostend,
Belgium). Normally distributed data are presented as
FIGURE 4 Slice-by-Slice Comparison of EGE and AAR by Microspher
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On the basis of an a priori sample size calculation, a
minimum of 10 experiments were required to detect a
correlation of 0.9 between AAR by EGE and micro-
spheres with a power of 0.9 and alpha of 0.01.

RESULTS

Eleven animals underwent successful coronary artery
occlusion and reperfusion before CMR (Figure 1).
Microsphere data were available for all animals (n ¼
11) at occlusion. On average, the left ventricle of each
animal was sliced into 91 sectors (range 66 to 131
sectors). Microsphere data were only available for 9
animals 48 h after reperfusion because of inadequate
reference blood flow sampling. During vessel occlu-
sion, blood flow in the AAR was significantly lower
FIGURE 5 Comparison of EGE and CMR Measures of AAR
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FIGURE 6 Midvent
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(0.34 � 0.21 ml/min/g vs. 0.31 � 0.18 ml/min/g; p ¼
0.17) or in the ischemic core compared with remote
(0.29 � 0.20 ml/min/g vs. 0.31 � 0.18 ml/min/g; p ¼
0.58), which indicates successful reperfusion. The
size of the AAR by microspheres was greater than the
size of infarct by TTC in all animals (42.7 � 9.2% vs.
20.7 � 14.4%; p < 0.001), which indicates significant
salvage.

EGE FOR AAR ASSESSMENT BY MICROSPHERE

ANALYSIS. There was no significant difference in the
size of enhancement on EGE images compared with
the size of perfusion defect by microspheres (44.1 �
15.8% vs. 42.7 � 9.2%; p ¼ 0.61) (Figure 2). The size of
EGE correlated well to the size of the AAR by micro-
spheres (r ¼ 0.88; p < 0.001) (Figure 3). Bland-Altman
analysis revealed good agreement, with a mean bias
of 1.4 � 17.4% of the entire left ventricle (Figure 3). In
a per slice comparison, the size of enhancement on
EGE also correlated well with the microsphere AAR
(r ¼ 0.89; p < 0.001) (Figure 4).

EGE FOR AAR ASSESSMENT BY QUANTITATIVE

MAPS. Compared with CMR measures of AAR (native
T1 and T2 map data were available in 10 studies),
there was no significant difference in the size of
ricular EGE, LGE, and TTC Slices From 3 Representative Animals

t of EGE was clearly greater than the infarction by TTC or LGE.

igure 1.
enhancement by EGE compared with the size of
enhancement on native T1 maps (45.8 � 15.6% vs.
43.4 � 16.1%; p ¼ 0.06). The correlation between EGE
and T1 maps was excellent (r ¼ 0.98; p < 0.001), with a
mean bias of 2.4 � 6.9%. Similarly, there was no
significant difference between the enhancement by
EGE and native T2maps (44.2� 16.7% vs. 39.0� 16.2%;
p ¼ 0.11). There was good correlation (r ¼ 0.85;
p < 0.01) between EGE and enhancement on T2 maps,
with a slight overestimation by Bland-Altman analysis
(5.2 � 17.8%). The comparison of the size of EGE to the
size of AAR defined by CMR measures is presented in
Figure 5. The size of the AAR by both types of quanti-
tative maps did not show any difference compared
with the size of the AAR by microsphere analysis:
43.4 � 16.1% versus 43.2 � 9.6% (p ¼ 0.95) for T1 maps
versus microspheres and 39.0 � 16.2% versus
43.2�9.6% (p¼0.27) for T2maps versusmicrospheres.

EGE AND MEASURES OF INFARCTION. Three repre-
sentative studies are depicted in Figure 6 in which the
EGE exceeded the infarction by LGE and TTC. In all
animals, the size of enhancement by EGE was greater
than the size of infarction by TTC (Figures 1 and 7).
The size of EGE was significantly greater than the
infarct by TTC (44.1 � 15.8% vs. 20.7 � 14.4%;
p < 0.001). This was also the case for the size of
enhancement by EGE compared with that of LGE
(44.1 � 15.8% vs. 23.5 � 12.7%; p < 0.001). In addition,
LGE showed excellent correlation to infarct size by
TTC (r ¼ 0.95; p < 0.001) and only very small sys-
tematic bias (Figure 8). Example T1, EGE, LGE, and
TTC images are shown in Figure 9.

DISCUSSION

This study demonstrates that AAR can be determined
by EGE, because there is a good correlation between
the size of EGE by CMR and the size of the AAR as
determined by microspheres, the pathological refer-
ence standard. There was also a very good correlation
between the size of hyperenhancement by EGE and
other CMR measures of AAR in this study (native T1
and T2 maps). Furthermore, the size of gadolinium
enhancement 3 min after contrast administration was
clearly greater than the pathological standard of
infarct size in this canine model of reperfused acute
myocardial infarction. LGE correlates much more
closely with infarct size. Also, the method presented
here can image EGE of the entire left ventricle in
approximately 18 heartbeats. The combination of EGE
and LGE enabled evaluation of AAR and infarct size
for the whole heart, as Matsumoto et al. (2) suggested
previously. An independent pathological standard of
microspheres and TTC confirmed this finding.



FIGURE 7 Comparison of AAR by CMR (Native T1, Native 2 and EGE) and Infarct Size by Pathology
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Although the correlation between AAR by T2-
weighted imaging and EGE has been demonstrated
in recent clinical studies (2,3), previous pre-clinical
studies have also reported a close correlation be-
tween gadolinium enhancement and AAR by
FIGURE 8 Infarct Size Comparisons
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FIGURE 9 Pathology and CMR Images of the Same Midventricular Short-Axis Slice

The AAR determined by abnormal microsphere blood flow during occlusion was not

significantly different from the size of hyperenhancement on native T1 maps, native T2

maps, or EGE. The size of enhancement by EGE 3 min after contrast administration was

significantly greater than the size of enhancement by LGE and the pathological infarct size

determined by TTC. Abbreviations as in Figures 1 and 7.
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(4,5,11). The use of PSIR sequences mitigates the dif-
ficulties associated with choosing correct TI times,
reducing the bias that might be caused by imaging
parameters and addressing technical variables that
might have contributed to the disparate findings.
Overestimation of infarct size by gadolinium
enhancement was recently confirmed in a porcine
study by Jablonowski et al. (12) using a PSIR
sequence.

Contrast-enhanced cine steady-state free-preces-
sion images have also been reported to correspond to
the AAR determined by SPECT and by T2-weighted
imaging in patients (13,14). Although this technique
relies on both the T1 and T2 properties of the
myocardium, it has been proposed that part of the
bright signal could be a result of the T1-shortening
properties of gadolinium in the salvaged myocar-
dium and not just in the infarct. Additionally, clinical
studies have found functional recovery in areas of
myocardium that display gadolinium enhancement,
as well as reduction in the extent of enhancement in
the following weeks to months, which also indicates
that irreversibly injured myocardium shows dynamic
gadolinium enhancement (15–18).

Arheden et al. (19) demonstrated in rats that the
distributional volume of gadolinium contrast was
greater in myocardium that had undergone 20 min of
ischemia but did not display infarction by TTC
compared with normal myocardium, although it was
less than that of infarcted myocardium (19). Recently
published data also showed that the salvaged
myocardium in a porcine model of ischemia and
reperfusion had an increased extracellular volume
(ECV) compared with normal myocardium both 1 day
and 7 days after ischemia (12). This provides a basis
for the understanding of accumulation of gadolinium,
an extracellular contrast agent, not only in the irre-
versibly damaged myocardium but also in reversibly
damaged myocardium. The expansion of the
extracellular space and interstitial edema as a
response to ischemia in reversibly injured myocar-
dium, in addition to intracellular edema, has been
reported previously in pathoanatomic studies (19–21).
Expansion of the ECV in reversibly injured myocar-
dium might be a result of several features of ischemic
injury: shifts in electrolytes from the intracellular to
the extracellular space, increased microvascular
permeability resulting in protein leakage from the
intravascular compartment, and structural alterations
in the extracellular matrix (21–25). Conversely, the
greater ECV in irreversibly injured myocardium is
also caused by loss of membrane integrity in the
injured cells and passive diffusion of gadolinium into
the intracellular space (26), which is why this ECV is
greater than in the normal and reversibly injured
myocardium. Klein et al. (27) showed different
wash-in/washout kinetics in infarcted and remote
myocardium in a clinical study. Differences in
contrast kinetics must also be important in reversibly
damaged myocardium, because enhancement of the
salvaged myocardium is not as pronounced in LGE
acquisitions. The findings in this study therefore
support the current literature and add important new
insight into the concept that gadolinium not only
depicts irreversibly injured myocardium but also
transiently enhances reversibly injured myocardium.

Although the use of EGE for determination of
myocardial AAR is exciting and easily interleaved in
the clinical work flow, more work is necessary to
unveil its clinical usefulness. It remains to be deter-
mined how long after a myocardial infarction this
technique can reliably be applied. In a canine model,
a substantial decrease of T2 values in the salvaged
myocardium (and thus edema) was evident within
the first 48 h after infarction (28), and a recent
porcine study suggests a bimodal pattern of edema
within the first days of reperfusion (29). These might
be species-specific effects, because the size of AAR by
T2-weighted imaging in clinical studies has been
shown to be stable within the first 7 days (30).
Furthermore, the optimal timing for EGE image
acquisition after contrast administration requires
further elucidation. In patients imaged up to 5 days
after acute myocardial infarction, Matsumoto et al. (3)
found the optimal timing for demarcation of EGE to
be 2 min after contrast administration compared with
T2-weighted enhancement as an indicator of the AAR.

STUDY LIMITATIONS. A canine model of reperfused
infarction could exhibit different contrast kinetics
compared with humans. Animals were imaged only
once after 48 h of reperfusion. Studying EGE after
various durations of reperfusion is necessary to



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: In acute reper-

fused infarcted myocardium, gadolinium enhancement of the

myocardium in the first minutes after contrast administration is a

novel CMR measure of the AAR that correlates well with estab-

lished CMR measures and a histopathologically defined size of

the AAR.

TRANSLATIONAL OUTLOOK: This study demonstrates

gadolinium enhancement of both reversibly and irreversibly

damaged myocardium in acute myocardial infarction. Further

study of the optimal timing of early gadolinium enhancement

after contrast administration for AAR determination in clinical

studies is warranted.
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understand the dynamic processes involved in the
regression of edema and the effect this has on the
accuracy of EGE in quantifying the AAR. The AAR by
EGE (or other CMR measures) might have a higher
signal intensity than the remote in animals scanned
after only a few hours of reperfusion and thus a
higher contrast-to-noise ratio than after 2 days,
assuming that some of the initial expansion of the
ECV resolves by 2 days of reperfusion. Additionally,
this study was performed in a tightly controlled
setting with healthy animals. The influence of factors
such as pre-conditioning, various amounts of collat-
eral flow, adequacy of reperfusion, and differences in
contrast elimination could have an influence on these
findings in the clinical setting.

CONCLUSIONS

EGE correlates well with the size of the AAR and thus
enhances both reversibly and irreversibly injured
myocardium. LGE accurately images myocardial
infarction in the same animals.
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