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In the past, most optical data processing systems have been restricted to performing linear space-invariant
operations. However, a wide class of interesting data processing operations require linear space-variant fil-
tering. Three methods for performing linear space-variant processing of 1-D inputs are described. Experi-
mental results obtained with all three systems are presented, and their relative advantages and disadvan-
tages are discussed.

I. Introduction
In their traditional forms, optical data processing

systems have been used primarily for the realization of
linear, space-invariant operations. Such operations
affect all parts of the input field identically and are
mathematically describable in terms of convolutions.'
However, many linear processing operations of interest
are space-variant, i.e., they affect different parts of the
input field in different fashions. Such operations must
be described mathematically in terms of superposition
integrals, rather than convolution integrals, and the
usual Fourier theory of data processing no longer
applies.

An important example of a linear space-variant op-
eration that can be performed optically is Fourier
transformation or spectral analysis. However, work on
the use of optical systems for performing more general
kinds of linear space-variant operations is not plentiful.
Cutrona2 recognized at an early date that coherent op-
tical systems are capable of realizing a general super-
position integral for 1-D inputs and showed one system
which could be used for this purpose. More recently,
Walkup and Hagler3 4 have considered the use of thick
holographic spatial filters for realizing space-variant
operations. Methods for optically realizing space-
variant operations by coordinate transformation pro-
cessing, i.e., a sequence of geometrical distortions and
linear space-invariant operations, 5 6 have been studied
by Goodman.7 '8 Casasent and Psaltis9 "10 have used
such an approach to perform Mellin transforms opti-
cally.
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In this paper, we discuss several optical methods for
performing space-variant linear operations on 1-D in-
puts, i.e., inputs that are functions of a single variable.
In Sec. II we explain the mathematical basis of these
methods and show how they can be implemented opti-
cally. In Sec. III, experimental results are presented
for all the methods, and the experimental difficulties
associated with each are discussed. Section IV contains
some concluding remarks.

II. Mathematical Representation and Optical
Realization of 1-D Space-Variant Linear Operations

For a 1-D linear space-variant operation, the input
f(x) and the output g(y) are.related by a superposition
integral'

(1)g(y) = f_ h(y,x)f (x)dx,

where h(y,x) represents the response of the system at
position y to a unit impulse applied at position x. This
is perhaps the simplest way of relating the input and
output. For a space-invariant operation, (y,x) de-
pends only on the difference of coordinates (y - x), and
Eq. (1) becomes a convolution integral.

To illustrate with some specific space-variant oper-
ations of interest, we mention the following:

(1) Geometrical distortions (or coordinate transfor-
mations):

g(Y) = f[z(Y)] = [z(y) -x]f(x)dx,

(2)h(y,x) = b[z(y) - x];

(2) Mellin transforms:

g(y) = xY-1f(x)dx,

h(y,x) = xY-1 U(x),

where
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(3) Inverse Abel transform":
' - f'(x) dx

g(Y) = f-y, 1 (
2

- y2)1/2'

h~yx)= -U( - Dd I1 4
h 7y r (X2 _y2)1/2 U dx

where d/(dx)[ ] is a differentiation operator which
operates only on the input flx).

Many other examples could be mentioned, but for
brevity we terminate here.

To realize optically the operation described by Eq.
(1), the optical system shown in Fig. 1 can be used. This
system is essentially equivalent to that discussed by
Cutrona.2 The cylindrical lens L1 illuminates the input
function through a horizontal slit in plane P,. Lens
combination L2 serves to image in the x direction while
it Fourier transforms in the y direction. The Fourier
transformation simply spreads the image of the input
vertically without affecting its horizontal structure. In
plane P2 we place a transparency with amplitude
transmittance t(x,y) = h(y,x). Lens combination L3
images in the y direction and Fourier transforms in the
x direction.12 The output is obtained through a vertical
slit coinciding with the y axis in plane P3. Along this
axis the Fourier transform becomes a simple integration
with respect to x, as required by Eq. (1). While we have
explained the operation of the system under the as-
sumption that the light is completely coherent, the
method will also work when the illumination is spatially
incoherent in the x direction, but full coherence in the
y direction is desirable from the point of view of efficient
light usage.

A second possible approach to realizing a space-var-
iant filter can be found by applying Parseval's theorem' 3

to the right-hand side of Eq. (1). Defining

Avx) = f(x) exp(-i2irvxx)dx,

h(y,vx) = 4! h(y,x) exp(-i2irvxx)dx, (5)

we have

(Y) g(y) = h(y, - vx)I(vx)dvx. (6)

p
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Fig. 1. Filtering system which uses two spherical-cylindrical lens
combinations.
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Fig. 2. Filtering system which uses one spherical-cylindrical lens
combination and one purely spherical lens.

that plane P 2 is imaged onto P3 in the y direction, but
Fourier transformed in the x direction. A vertical
output slit along the y axis then passes the desired in-
tegral.

Note that the transparency with complex amplitude
transmittance I (y, -vx) must in general be a hologram.
This hologram can be computer-generated or optically
generated, as discussed in more detail in Sec. III. If the
hologram has a carrier frequency in the vx direction, the
output slit must be displaced horizontally to coincide
with the position of the carrier frequency in the output
plane.

A third and final approach to the realization of the
superposition integral can be found by Fourier trans-
forming Eq. (6) with respect to y, giving

This mathematical form suggests the optical realization
shown in Fig. 2. Again the line-function input f(x) is
illuminated by means of a cylindrical lens L1. Lens L2
is in this case a spherical lens, and planes P1 and P 2
coincide with its front and back focal planes, respec-
tively. In the x direction, the input function is Fourier
transformed, while the effect of the lens in the vertical
direction is simply to spread this spectrum vertically by
virtue of the Fourier transformation of the narrow input
slit. In plane P2 we insert a mask with amplitude
transmittance proportional to (y,-vx). Lens L3 is a
combination of cylindrical and spherical elements such

Nvy) = Ii(vy,-vx)A(vx)dvx, (7)

where

g(vy) = f , g(y) exp(-i27rvyy)dy,

I(vy,-vx) = X 4X h(y,x) exp[-i2-7r(vyy - vxx)]dydx. (8)

Applying an inverse Fourier transform to Eq. (7), we
find

g(y) = 4' ' Ii(vy, -vx)?(vx) exp(i2rvyy)dvxdvy. (9)
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Fig. 3. Filtering system which uses two purely spherical lenses.
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The operations indicated in Eq. (9) can be imple-
mented optically by the system shown in Fig. 3. Again
the input function is illuminated by the cylindrical lens
L,. Lens L2 is spherical, and Fourier transforms the
input function in both directions. The effect of the
vertical transformation of the narrow input slit is simply
to spread out the horizontal transform in the vertical
direction. In plane P2 we place a mask with complex
amplitude transmittance (vy,-vx). Lens L3 is
spherical and again performs a 2-D Fourier transfor-
mation. A vertical output slit along the y axis (or dis-
placed horizontally if h is realized as a carrier-frequency
hologram) achieves a simple integration in the x di-
rection and a Fourier transformation in the vy direction,
as required by Eq. (9).

In summary, we have described three different but
related ways to optically realize the superposition in-
tegral of Eq. (1). In the next section we show some
experimental results obtained with each type of system
and discuss some advantages and disadvantages of
each.

III. Experimental Results
All three systems described above have been realized

optically and have been used to perform very simple
space-variant operations. In the following we describe
the results and indicate some of the advantages and
disadvantages associated with each approach.

The system of Fig. 1 has been used to realize two
different space-variant operations. The simplest is that
of a variable magnifier, which has an impulse response
described by

h(y,x) = (y - Mx).

(hI

(10)

Thus the mask h (y,x) in plane P2 consists of a simple
straight slit, passing through the origin and having slope
M, which is the magnification desired. The input
function f(x) in this experiment was a square wave
provided by a 20-lines/cm Ronchi ruling. Figures 4(a),
4(b), and 4(c) show the outputs obtained in plane P3
without the vertical output slit inserted and with three
different slit angles in plane P2. The width of this slit
was 80 Atm in these three cases.

A second experiment was performed with the system
of Fig. 1. In this case the input consisted of two small
openings in an opaque mask,

f(x) = O(x -XI) + (X -X2 ) (11)

as shown in Fig. 5(a). The transparency h (y,x) was a
transparent pie-shaped slit, centered on the origin,
mathematically described by

h(y,x) = rect (Yb ) (12)

(c)

Fig. 4. Variable magnifier realized with the system of Fig. 1: (a) slit
angle 100; (b) slit angle 30°; (c) slit angle 450 (output slit removed).

where b is a constant, as shown in Fig. 5(b). The out-
put, shown in Fig. 5(c), consists of two pulses blurred by
different amounts, depending on their location along
the y axis.

The chief advantages of the system of Fig. 1 are its
conceptual simplicity and the ease with which the re-
quired mask h(y,x) can usually be specified. In addi-
tion, in many cases of interest this mask is relatively

March 1977 / Vol. 16, No. 3 / APPLIED OPTICS 735

L,



t(X Y) = X _ XO _ (y + y)12 + a [X + + ( + yOU1 (13)

for y > -yo. This mask was inserted in the system of
Fig. 6(b) which Fourier transforms horizontally and
images vertically. The resulting recording may be re-
garded as a hologram and has an amplitude transmit-
tance of the form

t(vX,y) = kI + k2 cos lrPxxo + 2rvx(y + yo)1/21, (14)

where k1 and k2 are constants.
The transparency with transmittance described by

Eq. (14) is inserted in plane P 2 of Fig. 2. A Ronchi
ruling (20 lines/cm) is again placed in the input plane
P 2. At the output of the system we find the image
shown in Fig. 7 (output slit removed). This image
consists of a zero-order image of the input Ronchi ruling,

(a)

(b)

(c)

Fig. 5. Variable blur realized with the system of Fig. 1: (a) input
function; (b) mask in plane P2 ; (c) output (output slit removed).

easy to make. However, the system also has at least two
disadvantages. Most important, the lenses L2 and L 3
are spherical-cylindrical combinations, and it is difficult
to obtain high quality cylindrical components. (Note
that the cylindrical lens L 1 is common to all three sys-
tems, but need not be of high quality.) As a second
disadvantage, we note that any impulse response con-
taining a derivative operator [such as Eq. (4)] is difficult
to realize by this method.

Turning now to the system of Fig. 2, we describe an-
other simple experiment. In this case the goal was to
perform the geometrical transformation g(y) = f(x/y).
A mask having two transparent curved slits was pre-
pared, as shown in Fig. 6(a). The transmittance of this
mask was approximately

<//
//////7

-Yo

X0

(a)

GEOMETRICAL RECORDING
SLITS PLANE

( b)

Fig. 6. Recording of the required filter: (a) transparent slits; (b)
recording geometry.

Fig. 7. Output of the system of Fig. 2, with output slit removed, and
using the holographic filter generated as in Fig. 6.
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spread vertically, plus two first-order images resembling
bent Ronchi rulings. A vertical output slit appro-
priately placed in one of the first-order images yields the
desired 1-D output.

The chief advantages of this system over the system
of Fig. 1 are that it requires only one spherical-cylin-
drical lens combination and that it has high light effi-
ciency for operations that are close to geometrical dis-
tortions. The chief disadvantage of the system is the
necessity to generate a holographic filter.

Turning finally to the system of Fig. 3, we consider

(a)

(b)

(c)

Fig. 8. Output of the system of Fig. 3 operated as a variable magnifier
(output slit removed): (a) slit angle 200; (b) slit angle 400; (c) slit

angle 600.

the realization of a variable magnifier using this ap-
proach. Knowing that the variable magnifier has an
impulse response described by Eq. (10), we apply the
2-D transform of Eq. (8) to find the required mask to be
placed in plane P2 of Fig. 3. The result is

h(vy,-vx) = (vx - Mvy). (15)

Thus the required mask is again a simple slit, but with
a different orientation than the corresponding slit re-
quired for the system of Fig. 1. Figure 8 shows the
output of the system for three different slit angles, or
equivalently three different magnifications. In all cases
the output slit has been removed.

The advantage of this final system is the fact that it
requires only spherical optics (aside from the noncritical
cylindrical lens L,). A disadvantage is that, at least for
the variable magnifier realized here, the light efficiency
was less than that of the systems of Figs. 1 and 2. The
usable output field (space-bandwidth product) was
limited by the finite width of the filter slit. In addition,
in the case of a more general filtering operation, it is
necesssary to make a Fourier transform hologram of the
desired impulse response rather than using that impulse
response directly.

IV. Concluding Remarks
We have described three different methods for per-

forming space-variant filtering operations on 1-D in-
puts. The first method (Fig. 1) is a modified version of
the system described by Cutrona2 more than 10 years
ago. Both the first and second methods (Figs. 1 and 2)
are related to techniques described by Rhodes and
Florence14 for frequency-variant filtering. The third
method (Fig. 3) appears to be unrelated to any previous
work, but is a logical extension of the first two meth-
ods.

An entirely different method for performing coordi-
nate transformations in two dimensions has been de-
scribed by Bryngdahl. 15 While this method is more
general in the sense that is not limited to 1-D inputs, it
suffers from a severe limitation on the space bandwidth
product of the input to be processed. This limitation
arises from a mathematical approximation which is
valid provided the spatial frequency content of the
input is considerably smaller than the highest spatial
frequency contained in the computer-generated holo-
gram that performs the coordinate transformation. No
such limitation is present for the techniques described
here.

Finally, it should be mentioned that an ideal space-
variant filtering technique, capable of filtering 2-D
functions with large space-bandwidth products, is not
yet known.

This work was sponsored in part by the Office of
Naval Research and in part by the National Science
Foundation.
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