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Semiautomated Segmentation of Myocardial
Contours for Fast Strain Analysis in Cine

Displacement-Encoded MRI
Ting Chen*, Member, IEEE, James Babb, Peter Kellman, Leon Axel, and Daniel Kim

Abstract—The purposes of this study were to develop a semiauto-
mated cardiac contour segmentation method for use with cine dis-
placement-encoded MRI and evaluate its accuracy against manual
segmentation. This segmentation model was designed with two dis-
tinct phases: preparation and evolution. During the model prepa-
ration phase, after manual image cropping and then image inten-
sity standardization, the myocardium is separated from the back-
ground based on the difference in their intensity distributions, and
the endo- and epi-cardial contours are initialized automatically as
zeros of an underlying level set function. During the model evolu-
tion phase, the model deformation is driven by the minimization of
an energy function consisting of five terms: model intensity, edge
attraction, shape prior, contours interaction, and contour smooth-
ness. The energy function is minimized iteratively by adaptively
weighting the five terms in the energy function using an annealing
algorithm. The validation experiments were performed on a pool of
cine data sets of five volunteers. The difference between the semiau-
tomated segmentation and manual segmentation was sufficiently
small as to be considered clinically irrelevant. This relatively ac-
curate semiautomated segmentation method can be used to signif-
icantly increase the throughput of strain analysis of cine displace-
ment-encoded MR images for clinical applications.

Index Terms—Energy minimization, magnetic resonance
imaging (MRI), segmentation, strain.

I. INTRODUCTION

D ISPLACEMENT-ENCODED magnetic resonance
imaging (MRI) is a promising noninvasive modality

for the quantification of intramyocardial function [1], [2].
Since its development in 1999, displacement-encoded MRI
has undergone several improvements in the image acquisition,
including: cine acquisition [3], echo-combined reconstruction
[4], [5], through-plane motion encoding [6], parallel MR image
acquisition and reconstruction [5], [7], and balance steady-state
free precession (b-SSFP) readouts [5], [8], [9]. Despite these
improvements in the image acquisition, the development of
automated or semiautomated segmentation methods have been
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lagging [10], [11]. Currently, the manual segmentation of car-
diac contours is the rate-limiting step in the strain analysis, since
the subsequent steps, such as the phase unwrapping and finite
element model analysis, do not require manual intervention.
Therefore, the development of automated or semiautomated
segmentation methods could increase the throughput of strain
analysis of cine displacement-encoded MR images for clinical
applications.

The automation of myocardial contour segmentation in short-
axis images of the left ventricle (LV) is inherently difficult due
to several anatomical and imaging factors. Anatomical factors
that pose a significant challenge to accurately segment the car-
diac contours include: 1) the proximity between the endocar-
dial wall and papillary muscles, and 2) the ambiguous epicardial
border caused by the liver and right ventricular (RV) insertion
points. Additionally, cine displacement-encoded MR images of
the heart have nonuniform image intensity, because they are typ-
ically acquired using surface receive coils (e.g., spatial variation
of signal), and because their intensity decays as a function of
cardiac phase due to the longitudinal relaxation of magnetiza-
tion (e.g., temporal variation of signal).

Conventional semiautomated and automated segmenta-
tion methods can be classified into two generic categories:
boundary-based and region-based. The boundary-based seg-
mentation methods, such as the active contour [12]–[15] and
level set methods [16], use the local image features (i.e., edges)
to attract the evolving contours onto the target edges. However,
these methods have several limitations. First, they usually
require a manual initialization of the starting contour that must
be relatively close to the true contour of the object, typically
on an image-by-image basis, in order to avoid errors caused
by local gradients. The manual initialization can be both inac-
curate and tedious for large cardiac data analysis. Second, the
epicardial and endocardial boundaries may act as each other’s
local minimum and cause the evolving contours to converge
onto the wrong surface of the heart wall. Third, the resulting
contours may be overly smooth due to the internal surface
constraint. The region based segmentation methods [17]–[19]
use the intensity distribution and/or texture distribution to
separate the region-of-interest (ROI) from the background.
In displacement-encoded MR images of the LV, the papillary
muscles, the liver, and the chest wall have intensity distribu-
tions which are similar to that of the myocardium. As such,
the region-based methods may “leak” into the background and
produce inaccurate segmentation results for displacement-en-
coded MR images. Therefore, both the boundary-based and
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region-based methods may be unsuitable for accurate segmen-
tation of cardiac contours.

Hybrid segmentation frameworks [20]–[24] can overcome
the limitations of the boundary-based and region-based methods
by integrating the regional intensity and/or texture information
and the boundary information into one generalized energy
function for minimization. However, without the shape prior
information, hybrid segmentation frameworks cannot exclude
the papillary muscles from the LV. Shape priors [25]–[27] have
been developed to guide the segmentation using the principal
components analysis, but these methods are impractical for
clinical applications because they typically require a large
training set and a tedious training process. Therefore, con-
ventional hybrid frameworks may be unsuitable for accurate
segmentation of cardiac contours.

A recent hybrid framework that has been proposed to sepa-
rate the papillary muscles from the endocardium is the STACS
method [28]. This method uses a parametric shape prior to-
gether with the region and boundary information and integrates
them into one generalized energy function for minimization,
which is then driven by the calculus of variation under the
framework of level set. The shape prior provides an external
force to push the endocardial contour over local minima caused
by papillary muscles. This method also includes an adaptive
weighting process during the minimization of the energy func-
tion to improve its performance in the presence of image noise
and artifacts. Compared with the manual segmentation results
on mouse heart images, the STACS method has been shown to
produce relatively accurate segmentation results. However, the
STACS method may be suboptimal for cine displacement-en-
coded MR images of human heart due to several reasons. First,
it requires a manual initialization of starting contours for every
image, which is a limitation since a typical cine image set con-
tains 18–22 frames. Second, its stochastic intensity model of
the background is inaccurate. Third, its parametric shape prior
cannot fully exclude papillary muscles. Fourth, the endocardial
and epicardial surfaces are segmented separately in the STACS
method, thereby increasing both the overall segmentation time
and the likelihood of having the evolving contours converge
onto the wrong surface of the heart wall. Therefore, there is
a need to develop a customized segmentation method for cine
displacement-encoded MRI.

The purposes of this study, therefore, were to develop a hy-
brid framework to semiautomatically segment the cardiac con-
tours for cine displacement-encoded MRI and evaluate its accu-
racy against manual segmentation. The paper will be organized
as follows. Section II will briefly describe the image acqui-
sition and reconstruction of cine displacement-encoded MRI.
Section III will describe the segmentation method. Section IV
will describe the experiments and results. This paper will con-
clude with a discussion in Section V.

II. IMAGE ACQUISITION AND RECONSTRUCTION

A. Pulse Sequence

The improved cine displacement-encoded MRI pulse se-
quence [5] was implemented on a 3-T whole-body MR scanner
(Tim Trio, Siemens Medical Solutions, Erlangen, Germany)

equipped with a 12-channel phased array receive coil and a gra-
dient system capable of achieving a maximum gradient strength
of 45 mT/m and a slew rate of 200 T/m/s. Relevant imaging
parameters include: spatial resolution mm, slice
thickness mm, temporal resolution ms, and breath-hold
duration heartbeats. For additional details on the pulse
sequence, see [5].

B. Volunteer Imaging

Five healthy volunteers (two males; three females; min/me-
dian/max age years), with no history of heart dis-
ease and no risk factors for coronary artery disease, were imaged
in three short-axis (apical, midventricular, basal) views of the
heart. Human imaging was performed in accordance with pro-
tocols approved by the Human Investigation Committee at New
York University, and all subjects gave written informed consent.

C. Image Reconstruction

The image reconstruction was performed offline using Matlab
(The Mathworks, Inc., Natick, MA). The root-sum-of-squares
magnitude image was reconstructed and used for the segmenta-
tion algorithm. The displacement and the second principle strain

maps were calculated from the phase images as previously
described [3]–[5]. For details on the image reconstruction and
strain calculation, see [3]–[5].

III. METHODS

We developed a hybrid framework integrating features of the
STACS method [28] and new features to improve its segmenta-
tion performance for displacement-encoded MR images of the
LV. Our segmentation model consists of two phases: 1) prepara-
tion and 2) evolution. During the model preparation phase, after
manual image cropping and then image intensity standardiza-
tion, the model is initialized automatically. During the model
evolution phase, the model deformation is driven by the mini-
mization of the energy function, which consists of five terms:
1) regional intensity distribution, 2) edges, 3) shape of the my-
ocardium, 4) interaction between endo- and epi-cardial con-
tours, and 5) smoothness of the evolving contours. An annealing
algorithm [29] is implemented, as an extension of the previously
described fitting algorithm [28], not only to adaptively weight
the five terms in the energy function, but also to allow relax-
ation during the contour evolution to maximize the likelihood
for a global solution to the energy function. Fig. 1 shows the
overall flowchart of our segmentation method.

A. Model Preparation

1) Image Preprocessing: Prior to image processing, one
image per cine image set (typically end-systolic frame) was
manually cropped (typical matrix size pixels) with
the centroid of the LV approximately coinciding with the
centroid of the cropped image and the same image cropping
was propagated to the remaining frames in the cine set. The
manual image cropping was used to improve the overall
time efficiency and separate the myocardium from irrelevant
background features. To suppress random noise with minimal
image blurring, we used a nonlinear multistage median filter
with a 5 5 kernel [30]. To compensate for the temporally
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Fig. 1. Flow chart of our segmentation method. During the model preparation
phase, after manual image cropping and then image intensity standardization,
the myocardium is separated from the background based on the difference in
their image intensity distributions, and the starting contours are initialized au-
tomatically using a Mumford-Shah functional based method. During the model
evolution phase, the model deformation is driven by the minimization of the en-
ergy function consisting of five terms. An annealing algorithm is used to adap-
tively weight the five terms in the energy function to maximize the likelihood
for a global solution to the energy function.

Fig. 2. Schematic diagrams of the initial boundaries: (a) � , (b) � , and (c) �.

nonuniform intensity, we calculated the mean intensity of
the reference image (typically frame 2) in a cine image set
and normalized the intensity of other images in the cine set
by multiplying the factor , where is the mean
intensity of the reference image, and is the mean intensity of
the th image in the cine set. To compensate for the spatially
nonuniform intensity, we estimated the intensity profile across
the image using a 2-D polynomial function and normalized
the image intensity by dividing the images by the polynomial
fitted intensity profile estimate, as previously described [31].
The combination of both spatial and temporal intensity nor-
malizations converted the non-Gaussian myocardial intensity
distribution to an approximate Gaussian distribution, whereas
the background intensity distribution remained non-Gaussian.

2) Level Set Model Definition and Initialization: The endo-
cardial surface, , and the epicardial surface, , can be em-
bedded as the zero value in two level set functions and

, respectively

(1)

(2)

where is the set of pixels in the image, is the 2-D distance
map from the endocardial contour, and is the distance map

from the epicardial contour. Fig. 2 shows a schematic diagram
of the initial 2-D distribution for and . We as-
sign positive value to the interior, and the negative value to the
exterior of , and vice versa for . The complete level set
function is define as

(3)

The myocardium is

(4)

and the background is

(5)

Given that is defined by the locations of and , the level
set function is initialized by finding the optimal location for
and in target images using a Mumford-shah functional based
method [32] (see Appendix for the mathematical details).

B. Energy Function

During the model evolution phase, contours and de-
form under the influence of the image forces and the shape prior
information. The evolution of the contours is equal to the evo-
lution of the underlying . We define an energy functional
as a function of , which is minimized when and con-
verge onto their respective myocardial surface. Therefore, the
segmentation problem is equal to the minimization of , which
is similar to (1) in [28] but with a new energy term

(6)

where incorporates the intensity distribution variation be-
tween the object and background, is the edge attractor,

incorporates the new shape prior model of the heart wall
that removes the papillary muscles, controls the interac-
tion between and controls the smoothness of con-
tours, and is the weighting factor for the th term. Compared
with [28, eq. (1)], our energy function has a new term
and new definitions of and . Since is defined as
the zero level set of , we can also rewrite the energy function
in a similar formalism as [28, eq. (1)]

(7)

1) Intensity Stochastic Models: After performing the inten-
sity standardization, the myocardial intensity becomes approx-
imately normally distributed, whereas the background intensity
distribution remains non-Gaussian (Fig. 3). The myocardium
is separated from the background based on the difference in
their intensity distributions (see Appendix for the mathematical
details).

A nonparametric model was used to describe the back-
ground intensity distribution because of the unknown number
of background tissue types and their intensity distributions.
Unlike a Bayesian based method (i.e., linear combination of
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Fig. 3. Histograms of the myocardial and background intensities before and
after intensity standardization: (a) myocardial intensity histogram before inten-
sity standardization, (b) standardized myocardial intensity histogram after inten-
sity standardization, (c) background intensity before intensity standardization,
and d) background intensity after image standardization. Black line represents
the corresponding Gaussian model of the myocardium intensity.

Gaussians [33]), which requires prior intensity information to
effectively model the background, a nonparametric model is
adaptive, straightforward, and relatively effective at defining
non-Gaussian distributions.

2) Edge Attractor: The myocardial contours evolve and con-
verge onto their respective wall surface during the energy func-
tional minimization [28]. The corresponding energy term is de-
scribed using [28, eq. (11)].

3) Shape Prior: In [28] and [34], the shape prior informa-
tion is integrated into the segmentation algorithm by forcing the
evolving contour to resemble an ellipse . In the STACS
method [28], all pixels are weighted equally during the endo-
cardial contour estimation. We observed that concavities (e.g.,
pixels with negative curvature along ) are unlikely to be part
of the endocardial contour. Hence, our shape prior includes an-
other constraint to maintain surface convexity to effectively sep-
arate the papillary muscles from the heart wall. Specifically,
pixels with negative curvatures on are eliminated from the
estimation of the contour. This additional constraint prevents
the contour from collapsing because of the increased contour
convexity and maximization of area inside the closed contour.
Compared to the previous shape priors [28], [34], this new shape
prior has the advantage of effectively removing papillary mus-
cles (see Fig. 4 for a comparison between shape priors).

To prevent overflow, level set evolution step sizes were con-
trolled. For our self-adaptive shape model, we only use pixels
on with positive curvatures , to estimate .

(8)

Fig. 4. Comparison between the (left) STACS method and (right) our segmen-
tation method. The blue line represents the current evolving endocardial con-
tour, and the red line represents the estimated shape model. The STACS shape
model is estimated using all pixels on the current endocardial contour, whereas
our method uses only pixels with positive curvatures (represented by white dots)
on the current endocardial contour. The new method can effectively exclude the
papillary muscles even though the current endocardial contour still includes the
papillary muscles. Thus the new shape model provides a more accurate solution
for the endocardial contour than the STACS shape model. The images are dis-
played with matrix size of 25� 25 pixels.

To exclude erroneous pixels caused by local noise, we further
eliminate singular pixels with positive curvature from such
that the final pixel set for the shape estimation is

and

such that

(9)

where is the neighborhood of pixel . We then in-
tegrate the shape information by forcing the minimization of the
squared distance between the estimated contour and .
Fig. 4 illustrates the effectiveness of the new shaped prior to
overcome the local minima caused by papillary muscles.

The convex hull or envelope of can also be used to find a
subset of pixels on for the shape estimation. However, under
the framework of level set segmentation, the positive curvature
method may be superior to the convex envelope method. The
curvature along is precalculated for the contour evolution in
the level set framework such that no additional computation is
needed to find the subset using the curvature searching.

4) Contours Interaction: Unlike the original STACS method,
in our method, the endo- and epicardial surfaces evolve simul-
taneously during the energy functional minimization, similar
to the coupled propagation method.[35]. During the evolution
process, these two contours emit external forces that prevent
each other from being trapped at local minima. In the early stage
of contour evolution, the contours interaction maintains a flex-
ible distance between them by forcing the distance to approx-
imate the average contour distance between them. In the last
stage of the evolution, the weight of the contour interaction de-
creases to ensure that the contours can converge onto the edges
of the heart wall with uneven thickness. As an additional con-
straint to prevent overflow or shrinkage of the myocardial area
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in the final segmentation, the average distance between the con-
tours must lie within a range that is proportional to the LV size.

Recall the definition of and as the epi- and endo-cardial
surfaces, respectively, and . At any given time
point, the average distance between the epi- and endo-cardial
surfaces is calculated as

(10)

where is the distance between a curve and a
point (which is located on the other contour). We compute
the distance map with respect
to the endo- and epi-cardial surfaces. This enables us to define

(11)

To account for a variable thickness of the heart wall, we use a
quartic functional of in the energy term to allow small vari-
ations in thickness (i.e., for wall thickness within the range of
average dist ) and give penalty to contours which are either
too close or far from each other. A quartic functional performs
better than a quadratic functional in our application because the
penalty force enforced by the former and latter increase cu-
bically (see Fig. 3) and linearly with , respectively.
Compared with a quadratic functional, a quartic functional is
relatively less sensitive to small variations and relatively more
sensitive to large variations of heart wall thickness. Based on
the definition of , we have the fourth term in the en-
ergy function

(12)

This term is equivalent to two sources that exert forces as
illustrated in Fig. 5.

5) Contour Smoothness: We minimized the Euclidean arc
length of the myocardial boundary to smooth the contour, as
previously described by [28, eq. (27)].

6) Overall Energy Functional: By embedding as the zero
level of , the overall energy functional has the following form:

(13)

(14)

where is the Heaviside function,
is the regularized delta function, and are the negative log

Fig. 5. Schematic diagram illustrating the interaction between the epi- and
endo-cardial contours.

of the myocardial and background intensities probability den-
sity function (pdf), respectively, and

(15)

(16)

(17)

where the weighting factor controls the relative strength of
each term in the energy functional. With exception to the edge
map (i.e., is the Gaussian oper-
ator), which is a static map derived from the image prior to the
energy minimization, all other terms in the energy functional
are dynamically updated during the evolution of the myocar-
dial contours. is the distance between the current endocardial
contour and the estimated ellipsoid; and are the distance
maps from the endocardial and epicardial contours, respectively.

C. Energy Function Minimization

1) Recursive Minimization Framework: Some terms in the
energy functional (with variable or ) change during the
model evolution. As such, the energy functional minimization
is designed as an iterative process with two steps per iteration.
The first step renews the energy function by estimating the
new parameters for variable terms. The second step updates
the myocardial contours in the form of the level set function
(i.e., with and separated) based on the Euler-Lagrangian
equation (see Appendix for the mathematic details).

2) Annealing and Relaxation: A simulated annealing algo-
rithm was used to adaptively update the weighting factors during
the energy minimization, in order to increase the likelihood that
the energy function will achieve a global minimum (Fig. 6).
The simulated annealing algorithm is divided into the following
three phases: cooling, reheating, and relaxation.

a) Cooling Phase: and have relatively large values,
and have relatively small values. During this phase, the

segmentation is driven by the image information, while the
shape prior and contour interaction act as weak constraints on
the contours to avoid irregularity of the evolving contours.
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Fig. 6. The value of � during the simulated annealing. This annealing algo-
rithm is used to adaptively weight the five terms of the energy function, in order
to maximize the likelihood for a global solution to the energy function.

b) Reheating Phase: and increase dramatically as
and decrease. Large and values enable the model

to avoid local minima using the prior information on the heart
shape and heart wall thickness. This phase pushes the model
towards the global minimum of the energy function. Regional
intensity and edges serve as weak constraints to ensure that the
model will not move away from the object.

c) Recooling or Relaxation Phase: and increase
again as and decrease rapidly towards their initial values.
After the model has been pushed towards the global minimum,
the shape prior is turned off to allow the contours to settle onto
the local edges. We use the image information and the gradient
descent method to converge the model onto its global minimum.

The weighting factors during the cooling and reheating
phases are described as

where

(18)

where

(19)

is the current iteration number and is the total number
of iterations in the cooling and reheating phases. We set

, and for
.

We denote the number of iterations in the relaxation phase to
be . The formulation for and will not change for

. For and , the formulation changes to

where

(20)

is the total number of iterations. We set
and for . We note that

during the energy minimization.
To increase the confidence of the final energy minimization

result, we empirically determined the values for and using
several training data sets. A large can increase the likelihood
that the energy functional achieves a global minimum, but at the
expense of increased computation. Empirically, was
determined to be sufficient for segmenting myocardial contours,
and was determined to ensure that the energy functional
will not move away from the global minimum. Fig. 6 shows the
adaptive weighting of the energy function terms in the annealing
algorithm.

IV. EXPERIMENTS AND RESULTS

A. Qualitative Validation

We qualitatively compared the performance of our seg-
mentation method against the manual segmentation and four
other segmentation methods: 1) boundary-based segmentation
driven by gradient vector fow (GVF) [15], 2) region-based
segmentation by Chan and Vese [18], 3) hybrid Metamorpth
framework [23], 4) and the STACS method [28]. Fig. 7 shows
the segmentation results produced by these methods. This
particular template image contains difficult segmentation fea-
tures, including: papillary muscles and RV insertion points.
Compared to the manual segmentation [Fig. 7(a)], different
segmentation methods yielded markedly different results, even
though they had all used identical initial contours. Specifically,
the boundary-based segmentation driven by GVC failed to sep-
arate the papillary muscles from the myocardium and produced
an overestimated endocardial contour due to its internal surface
constraint, as well as distorted epicardial contour due to the
local gradient caused by the endocardial surface [Fig. 7(b)].
Compared to the GVF method, Chan and Vese’s algorithm pro-
duced more accurate segmentation in regions without difficult
features. However, it failed to separate the papillary muscles
from the endocardium and produced “leaked” results in the RV
wall and liver [Fig. 7(c)]. The Metamorph method, using the
scalar gradient [22] to improve its performance at concavities,
produced more accurate results compared with the previous
two methods [Fig. 7(d)]. However, it failed to separate the
papillary muscles from the endocardium and produced slightly
overestimated epicardium at the inferior RV insertion point.
The STACS method produced more accurate results compared
with the previous three methods [Fig. 7(e)]. However, it failed
to separate one of the papillary muscles due to the limitation
of its shape prior model and the lack of interaction between
epi- and endo-cardial contours. Compared with the previous
four segmentation methods, our segmentation method pro-
duced more accurate results with both the papillary muscles
and RV insertions points separated from the myocardium.
Fig. 8 compares the manual segmentation results and the
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Fig. 7. Comparison between the different segmentation methods: (a) manual
segmentation, (b) boundary based segmentation driven by GVF, (c) region in-
tensity based segmentation using Chen and Vese, (d) hybrid Metamorph frame-
work, (e) STACS framework, and (f) our segmentation framework. All segmen-
tation methods (except manual) used identical initial contours derived from the
zero level of the underlying level set function � to perform a fair comparison.
Red lines represent the segmentation results, and the dotted blue lines represent
the starting contours. These images are displayed with matrix size of 24� 24
pixels.

Fig. 8. Comparison between the (a) manual and (b) semiautomated segmenta-
tion outcomes at (top row) end systole and (bottom row) late diastole: (column
1) base, (column 2) midventricular, and (column 3) apex. Images are displayed
with red lines, which represent the endo- and epi-cardial surfaces. These images
are displayed with matrix size of 27�27 pixels.

corresponding results produced by our segmentation method in
three short-axis views of the LV (apex, midventricular, base)
at early systole, end systole, and late diastole. Fig. 9 shows
representative displacement and maps generated using the
manual segmentation and the corresponding results produced
by our segmentation method. These two qualitative compar-
isons suggest that our segmentation method can reproduce the
manual segmentation results.

B. Quantitative Validation

We calculated the area similarity and shape similarity
to evaluate the accuracy of our segmentation method against the
manual segmentation on a pool of cine image sets of five volun-
teers (i.e., three short-axis views per subject; 294 total images).
For simplicity, we chose one set of manual segmentation results
by one reader as the “Gold Standard.”

1) Area Similarity: We calculated the true positive (TP), true
negative (TN), and false positive (FP) [36] and [37] be-
tween the semiautomated segmentation and the manual seg-

Fig. 9. Comparison of (left column) displacement and (right column)� maps
generated using the (top row) manual segmentation and the corresponding
(bottom row) semiautomated segmentation. These images are displayed with
matrix size of 32�32 pixels.

mentation. TP is the fractional amount of area that the semi-
automated method correctly segmented relative to the area of
the manual segmentation. TN is the fractional amount of area
that the semiautomated method failed to segment relative to the
area of the manual segmentation. FP is the fractional amount
of area that the semiautomated method falsely segmented rel-
ative to the area of the manual segmentation. The FP-TN-TP
system not only measures the overlapping area between two re-
gions but also measures the relative contribution made by FP
and TN. measures the overall segmentation performance
and is defined as

(21)

where indicates an excellent agreement between
two segmentations.

2) Shape Similarity: The shape similarity quantifies the dif-
ference in local orientation between two different segmenta-
tions, as previously described [28] and [38]. Compared with

, shape similarity is more sensitive to local variations in
the object shape. For example, the inclusion of papillary mus-
cles may cause a relatively small change in and a com-
paratively larger change in shape similarity. In cine displace-
ment-encoded MRI, it is important to maintain the correct shape
orientation because the underlying image contains region spe-
cific cardiac motion information. Therefore, we calculated the
shape similarity as an additional measure to evaluate the perfor-
mance of the segmentation method.

3) Interobserver and Intraobserver Variability in Manual
Segmentation: We calculated the intraobserver and interob-
server variability in manual segmentation using and shape
similarity measurements, in order to evaluate the accuracy of the
semiautomated segmentation method. For consistency, the pap-
illary muscles were excluded from the manual segmentation.
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TABLE I
COMPARISON OF MEAN FN-TN-TP AND � VALUES PRODUCED

BY THE SEMIAUTOMATED AND MANUAL SEGMENTATION

METHODS STRATIFIED BY LOCATION

TABLE II
SUMMARY OF SHAPE SIMILARITY MEASURES FOR OUR SEGMENTATION

METHOD AND THE INTRAOBSERVER AND INTEROBSERVER

VARIABILITY IN MANUAL SEGMENTATION

To calculate the intraobserver variability, one reader manually
segmented the images and repeated the blinded segmentation
two months later. To calculate the interobserver variability,
the second reader performed the manual segmentation of the
images. The two readers were blinded to each other.

Table I summarizes the FP-TN-TP and values cal-
culated for our segmentation method and the intraobserver
and interobserver variability in manual segmentation using

measurements. The mean TP over subjects was 88.1%,
which represents an excellent agreement in the object area
and location, whereas the mean values of FN (11.4%) and
TN (11.9%) were relatively small, indicating that the semiau-
tomated segmentation results were neither overestimated nor
underestimated. The mean over subjects was %,
whereas the interobserver and intraobserver values were

% and %, respectively. Table II sum-
marizes the shape similarity measures for our segmentation
method and the intraobserver and interobserver variability in
manual segmentation. The mean shape similarity over subjects
was %, whereas the interobserver and intraobserver
shape similarity values were % and %,
respectively.

For statistical evaluation, mixed model analysis of variance
was used to assess and compare the segmentation methods
(semiautomated segmentation versus interobserver variability

TABLE III
HSD-ADJUSTED TWO-SIDED P VALUES FOR THE COMPARISON

OF METHODS STRATIFIED BY LOCATION

in manual segmentation and semiautomated segmentation
versus intraobserver variability in manual segmentation) with
respect to the mean and the mean shape similarity mea-
sure within each location (apex, middle, and base) as well as the
average over all locations. A separate analysis was conducted to
compare the methods with respect to and in terms of the
shape similarity measure. In each case, the data from all three
methods were used as the dependent variable and the model
included location and the indicator variable identifying mea-
surements derived for the same ROI as classification factors.
The variance–covariance structure was modeled by assuming
observations to be correlated only when acquired from the
same subject and by allowing the error variance to differ across
methods and locations. Within this mixed model context,
Tukey’s honestly significant difference (HSD) procedure was
used to compare each pair of methods while maintaining the
overall type I error rate for the set of comparisons below the 5%
level. Table III summarizes the -values for each of the three
locations and for the average over these locations. Although

and the shape similarity measures of the semiautomated
segmentation were observed to be in good agreement with those
of the interobserver similarities, the results from the mixed
model analysis indicate that the segmentation performance of
our segmentation method is significantly different from that of
the interobserver and intraobserver variability (HSD-adjusted

for the mean over locations).
Since even trivial differences can achieve statistical signif-

icance in the presence of superfluous statistical power,
and the shape similarity measures were scrutinized to assess
the magnitude of these differences and determine whether the
significant differences can be considered clinically meaningful.
Thus, 95% confidence intervals were generated for the differ-
ence between methods (semiautomated segmentation versus
interobserver variability and semiautomated segmentation
versus intraobserver observer variability) with respect to the
mean of each measure ( and shape similarity) in each lo-
cation (apex, middle, and base) and averaged over all locations.
The end points of a given interval provide an indication of how
large or small the corresponding true difference may be and
still be considered consistent with the observed data. As shown
by the confidence intervals in Table IV, the data provide 95%
confidence that the difference between semiautomated segmen-
tation and the interobserver and intraobserver variability with
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TABLE IV
LOWER AND UPPER BOUNDS OF THE 95% CONFIDENCE INTERVAL FOR THE

DIFFERENCE BETWEEN METHODS (DENOTED BY INTER, INTRA, AND AUTO)
STRATIFIED BY LOCATION. FOR EACH COMPARISON, THE UPPER BOUND CAN

BE INTERPRETED AS THE LARGEST MAGNITUDE OF DIFFERENCE BETWEEN THE

TRUE MEANS THAT IS CONSISTENT WITH THE DATA. THUS, IF THE UPPER

BOUND CAN BE ACCURATELY DESCRIBED AS A CLINICALLY IRRELEVANT

DIFFERENCE, THEN THERE IS 95% CONFIDENCE THAT THE TWO METHODS

DO NOT DIFFER BY A CLINICALLY RELEVANT AMOUNT

respect to is no greater than 5% in any one location and
is no more than 3.9% when averaged over locations. Thus, to
the extent that a 5% difference might be considered clinically
irrelevant, there is 95% confidence that the difference between
the mean of our segmentation method and the means for
each of interobserver and intraobserver variability is of little
practical importance even though highly statistically significant.
The data provide 95% confidence that the difference between
the semiautomated segmentation and the interobserver and
intraobserver variability with respect to the shape similarity is
less than 10% when averaged over locations. Thus, to the extent
that a 10% difference might be considered clinically irrelevant,
there is 95% confidence that the difference between the mean
shape similarity of our segmentation method and the means
for each of the interobserver and intraobserver variability is
of little practical importance even though highly statistically
significant.

V. DISCUSSION AND CONCLUSION

This study describes a hybrid framework that could be
used for semiautomated segmentation of cardiac contours in
cine displacement-encoded MRI. This framework combines
features of the STACS method and new features to improve its
overall segmentation performance. Our segmentation method
consists of two phases: preparation and evolution. During
the preparation phase, after manual image cropping and then
after intensity standardization, the myocardium is separated
from the background based on the difference in the intensity
distribution, and a Mumford-Shah functional based method
is used to automatically initialize the optimal starting bound-
aries of the endocardial and epicardial surfaces. During the
model evolution phase, an energy functional minimization
is used to drive the evolving contours to converge onto the
corresponding myocardial surfaces. The validation analysis

yielded a good agreement between the semiautomated and
manual segmentation results (Tables I–IV). This relatively
accurate semiautomated segmentation framework can be used
to significantly increase the throughput of strain analysis of cine
displacement-encoded MR images for clinical applications.

This method has several advantages. First, after minimal
manual interaction of image cropping (one frame per cine
image set), the coupled active contours are automatically ini-
tialized during segmentation (e.g., improves the overall time
efficiency). Second, a nonparametric model of the background
intensity distribution is used to separate the myocardium from
the background. Third, a self-adaptive parametric shape prior
model is used to avoid local minima (e.g., papillary muscles).
Fourth, the epicardial and endocardial surfaces are simul-
taneously segmented with mutual interaction between them
to prevent the contours from converging onto local minima.
Fifth, a simulated annealing algorithm is incorporated into the
energy function to adaptively weight the different terms in the
energy function during minimization, in order to prevent the
contours from being trapped at local minima. One limitation
of this method is that image cropping is performed manually.
However, image cropping can be automated by tracking the
heart motion through the cardiac cycle, as previously described
[28]. Another limitation of this study is that it did not include
short-axis images of remodeled hearts with irregular shapes
and long-axis images, which have different geometry than
short-axis images.

Our segmentation method can be performed efficiently for
typically cropped cine image sets (e.g., 27 27 22 matrices).
The computation time is less than 15 s for each cine set using a
computer with 2-GHz CPU clock speed. The computational per-
formance can be further improved using parallel programming.

The accuracy of our segmentation method depends on the
overall image quality (e.g., spatial resolution, temporal resolu-
tion, signal-to-noise ratio), as well as the shape of the underlying
heart. The test images were acquired using the improved cine
displacement-encoded MRI at 3 T [5]. The performance of our
segmentation method may be invalid for cases with poor image
quality. On the other hand, further improvements in the image
quality (e.g., pulse sequence development, shimming, and
32-channel cardiac array coils) may yield comparatively more
accurate segmentation results by our segmentation method.

APPENDIX

A. Model Preparation

1) Contour Initialization by a Mumford-Shah Method: The
contour initialization module is designed to minimize the energy
function:

(A1)

where weights , and and
are areas of the object and the background, respectively, and

are intensity variances in the object and the background,
respectively, and is the observation of the image intensity.
The variable in the energy function in (A1) is in the form of
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two circles so that we can parameterize into ,
where are the radii for circles corresponding to
the epi- and endo-cardial surfaces and are the spatial co-
ordinates of the centroid. To determine the optimal location for

, we minimize the energy functional in (A1) using the gra-
dient descent method. The minimization process is computa-
tionally efficient, as well as intuitive, since the numerical solu-
tion for , and
are easy to compute when the shape of is fixed. The final is
composed of two circles representing the endo- and epicardial
surfaces so that we can use as the initial location for and

and derive the level set function based on it.

B. Energy Function

1) Intensity Model: The object intensity is modeled using
the stochastic model described in [28]. The background con-
sists of different tissues and, therefore, cannot be described by
one normal pdf, as illustrated in Fig. 3. Hence, we use a non-
parametric model to describe the background intensity. The two
intensity distribution models are integrated into the energy func-
tion, as described in [28].

C. Energy Function Minimization

1) Recursive Minimization Framework:
Step 1: Parameter Estimation. The terms that evolve along

with the myocardial contours are , and . The deriva-
tion of is straight forward, so we will concentrate on the pa-
rameters and . and : We first compute the average
distance between endo- and epi-cardial contours using (10) and
then use (11) to produce the interaction field for each myocar-
dial contour. We compute the average distance in (10), because
it can adapt with different data and self-adjust during the model
evolution. Note that we preset an upper and a lower limit of the
distance between the epi- and endo-cardial contours to be pro-
portional to the LV size, in order to avoid contour collision and
overflow.

Given the current and , we calculate
along , which resembles the curvature of ,

and use it during the curve evolution. It has positive values
at convexities and negative values at concavities. We select a
convex subset of using (9) and estimate the shape of .
In the next step, we minimize the squared distance between
and as previously described. [28]:

Step 2: Contour Evolution. Assuming all terms in the energy
functional have been updated, we evolve the level set function

(i.e., myocardial contours ) to minimize the energy func-
tional. For convenience, the energy function (13) can be divided
into two parts that correspond to the endocardial and epicardial
contours, respectively. According to the calculus of variation
[39], the Euler–Lagrange equation for the endo- and epi-cardial
contours evolutions are

(A2)

(A3)

where

(A4)

and

(A5)

We solve and iteratively by replacing the right-hand
side of (A2) and (A3) by and . The partial
differential equations governing the evolution of and are

(A6)

and

(A7)

where and are updated separately using the gradient de-
scent method and then combined to update using (3). By sep-
arately calculating the curvatures of and , we overcome
the problem of sudden changes in function values caused by the
maximum function. Furthermore, we restrict the calculation of
the curvature within a narrow band centered at either or ,
in order to speed up the computation and eliminate the impact
of function discontinuities.

ACKNOWLEDGMENT

The authors would like to thank D. Metaxas, Ph.D., of
Rutgers University for helpful discussions on the segmentation
model.

REFERENCES

[1] A. H. Aletras, S. Ding, R. S. Balaban, and H. Wen, “DENSE: Displace-
ment encoding with stimulated echoes in cardiac functional MRI,” J.
Magn. Reson., vol. 137, pp. 247–252, 1999.

[2] A. H. Aletras and H. Wen, “Mixed echo train acquisition displacement
encoding with stimulated echoes: An optimized DENSE method for in
vivo functional imaging of the human heart,” Magn. Reson. Med., vol.
46, pp. 523–534, 2001.

[3] D. Kim, W. Gilson, C. Kramer, and F. Epstein, “Myocardial tissue
tracking with two-dimensional cine displacement-encoded MR
imaging: Development and initial evaluation,” Radiology, vol. 230,
pp. 862–871, 2004.

[4] D. Kim, F. H. Epstein, W. D. Gilson, and L. Axel, “Increasing the
signal-to-noise ratio in DENSE MRI by combining displacement-en-
coded echoes stimulated echoes in cardiac functional MRI,” Magn.
Reson. Med., vol. 52, pp. 188–192, 2004.



1094 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 8, AUGUST 2008

[5] D. Kim and P. Kellman, “Improved cine displacement-encoded MRI
using balanced steady-state free precession and time-adaptive sensi-
tivity encoding parallel imaging at 3 T,” NMR Biomed., vol. 20, pp.
591–601, 2007.

[6] F. H. Epstein and W. D. Gilson, “Displacement-encoded cardiac
MRI using cosine and sine modulation to eliminate (CANSEL)
artifact-generating echoes,” Magn. Reson. Med., vol. 52, no. 4, pp.
774–781, 2004.

[7] A. H. Aletras, W. P. Ingkanisorn, C. Mancini, and A. E. Arai, “DENSE
with SENSE,” J. Magn. Reson., vol. 176, pp. 99–106, 2005.

[8] E. E. Bennett, V. M. Pai, and H. Wen, “Ultrafast DENSE technique for
mapping the volumetric 3D wall motion of the left ventricle,” in Proc.
10th Annu. Meeting Int. Soc. Magn. Reson. Medicine, Honolulu, HI, ,
2002, p. 775.

[9] F. H. Epstein, S. Voros, W. D. Gilson, and C. M. Kramer, “Quanti-
tative wall motion imaging by cine DENSE in acute myocardial in-
farction: Initial experience using an ssfp-based sequence,” presented
at the Proc. 7th Annu. Meeting Soc. Cardiovascular Magn. Reson.,
Barcelona, Spain, 2004.

[10] B. S. Spottiswoode, X. Zhong, A. T. Hess, C. M. Kramer, E. M. Mein-
tjes, B. M. Mayosi, and F. H. Esptein, “Tracking myocardial motion
from cine dense images using spatiotemporal phase unwrapping and
temporal fitting,” IEEE Trans. Med. Imag., vol. 26, no. 1, pp. 15–29,
Jan. 2007.

[11] B. Spottiswoode, X. Zhong, C. H. Lorenz, B. M. Mayosi, E. M. Mein-
tjes, and F. H. Epstein, “Motion-guided segmentation of the left ven-
tricle for cine DENSE MRI,” in Proc. 14th Annu. Meeting Int. Soc.
Magn. Reson. Medicine, Seattle, WA, , 2002, p. 794.

[12] L. D. Cohen, “On active contour models and baloons,” CVGIP: Image
Understand., vol. 53, pp. 211–218, 1991.

[13] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988.

[14] D. Metaxas, Physics-Based Deformable Models: Applications to Com-
puter Vision, Graphics and Medical Imaging. Norwell, MA: Kluwer
Academic, 1996.

[15] C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,”
IEEE Trans. Image Process., vol. 7, no. 3, pp. 359–369, Mar. 1998.

[16] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front
propagation: A level set approach,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 17, no. 2, pp. 158–175, Feb. 1995.

[17] D. H. Ballard and C. M. Brown, Computer Vision. New York:
Springer, 1982.

[18] T. Chan and L. Vese, “Active contour without edges,” IEEE Trans.
Image Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.

[19] S. Z. Li, Markov Random Field Modeling in Computer Vision. New
York: Springer, 1995.

[20] T. Chen and D. Metaxas, “Image segmentation based on the integra-
tion of markov random fields and deformable models,” in Proc. Med.
Image Comput. Computer-Assisted Intervention (MICCAI), 2000, pp.
256–265.

[21] T. Chen and D. Metaxas, “A hybrid framework for 3D medical image
segmentation,” Med. Image Anal., vol. 9, pp. 547–565, 2005.

[22] T. Chen, D. Metaxas, and L. Axel, “3D cardiac anatomy recon-
struction using high resolution CT data,” in Proc. Med. Image
Comput. Computer-Assisted Intervention (MICCAI), 2004, vol. 1,
pp. 411–418.

[23] X. Huang, D. Metaxas, and T. Chen, “MetaMorphs: Deformable shape
and texture models,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., 2004, vol. 1, pp. 496–503.

[24] S. Zhu and A. Yuille, “Region competition: Unifying snakes, region
growing, and bayes/mdl for multiband image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 18, no. 9, pp. 884–900, Sep.
1996.

[25] T. Cootes, C. Taylor, D. Cooper, and J. Graham, “Active shape
models-Their training and application,” Comput. Vision, Graphics,
Image Process: Image Understanding (CVGIP), vol. 1, pp. 38–59,
1994.

[26] N. Paragios, “Shape-based segmentation and tracking in cardiac image
analysis,” IEEE Trans. Med. Imag., vol. 22, no. 6, pp. 773–776, Jun.
2003.

[27] A. Tsai, A. Yezzy, W. Wells, C. Tempany, D. Tucker, A. Fan, W. E.
Grimson, and A. Willsky, “A shape-based approach to the segmenta-
tion of medical imagery using level sets,” IEEE Trans. Med. Imag., vol.
22, no. 2, pp. 137–154, Feb. 2003.

[28] C. Pluempitiwiriyawej, J. M. F. Moura, Y.-J. L. Wu, and C. Ho,
“STACS: New active contour scheme for cardiac MR image segmenta-
tion,” IEEE Trans. Med. Imag., vol. 24, no. 5, pp. 593–603, May 2005.

[29] G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo
Metods. New York: Springer-Verlag, 1995.

[30] A. Nieminen, P. Heinonen, and Y. Neuvo, “A new class of detail-pre-
serving filters for image processing,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. PAMI-9-1, pp. 74–90, Jan. 1987.

[31] A. Madabhushi and J. K. Udupa, “Interplay of intensity standardiza-
tion and inhomogeneity correction in MR image analysis,” IEEE Trans.
Med. Imag., vol. 24, no. 5, pp. 561–576, May 2005.

[32] D. Mumford and J. Shah, Commun. Pure Appl. Math. “Optimal ap-
proximations by piecewise smooth functions and associated variational
problems,” 1989, vol. 42, pp. 577–685.

[33] A. A. Farag, A. S. El-Baz, and G. Gimel’farb, “Precise segmentation of
multimodal images,” IEEE Transactions Image Process., vol. 15, no. 4,
pp. 952–968, Apr. 2006.

[34] G. Aubert and P. Kornprobst, Mathematical Problems in Image
Processing. Partial Differential Equations and the Calculus of Varia-
tions. Berlin, Germany: Springer-Verlag, 2001.

[35] X. Zeng, L. H. Staib, R. T. Schultz, and J. S. Duncan, “Volumetric layer
segmentation using coupled surfaces propagation,” in Proc. 1998 IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Santa Barbara, CA,
Jun. 1998, pp. 708–715.

[36] J. Udupa, V. LeBlanc, H. Schmidt, C. Imielinska, P. K. Saha, G. J.
Grevera, Y. Zhuge, L. M. Currie, P. Monholt, and Y. Jin, “A methology
for evaluating image segmentation algorithms,” in Proc. SPIE: Med.
Imag., 2002, vol. 4684, pp. 266–277.

[37] A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, and A. C. Palmer,
“Morphometric analysis of white matter lesions in MR images: Method
and validation,” IEEE Trans. Med. Imag., vol. 13, no. 4, pp. 716–724,
Dec. 1994.

[38] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf,
“Parametric correspondence and chamfer matching: Two techniques
for image matching,” in Proc. 5th Annu. Int. Joint Conf. Artif. Intell.,
Aug. 1977, pp. 659–663.

[39] L. E. Elsgolc, Calculus of Variations. Reading, MA: Addison-
Wesley, 1962.


