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IIR GRAPPA for Parallel MR Image Reconstruction

Zhaolin Chen,1,2,3* Jingxin Zhang,2 Ran Yang,4 Peter Kellman,5 Leigh A. Johnston,1,3,6

and Gary F. Egan1,7

Accelerated parallel MRI has advantage in imaging speed, and
its image quality has been improved continuously in recent
years. This paper introduces a two-dimensional infinite impulse
response model of inverse filter to replace the finite impulse
response model currently used in generalized autocalibrat-
ing partially parallel acquisitions class image reconstruction
methods. The infinite impulse response model better char-
acterizes the correlation of k-space data points and better
approximates the perfect inversion of parallel imaging process,
resulting in a novel generalized image reconstruction method
for accelerated parallel MRI. This k-space-based reconstruc-
tion method includes the conventional generalized autocali-
brating partially parallel acquisitions class methods as special
cases and has a new infinite impulse response data estima-
tion mechanism for effective improvement of image quality.
The experiments on in vivo MRI data show that the proposed
method significantly reduces reconstruction errors compared
with the conventional two-dimensional generalized autocali-
brating partially parallel acquisitions method, particularly at the
high acceleration rates. Magn Reson Med 63:502–509, 2010.
© 2009 Wiley-Liss, Inc.
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Parallel MRI is a technique that uses multiple receiver coils
operating in parallel to acquire k-space signals. Because
multiple receivers are used, the image acquisition can be
accelerated several times compared to the conventional full
k-space acquisition. Many image reconstruction methods
have been developed in recent years to take full advantage
of parallel MRI in different medical imaging applications.
Of these methods, sensitivity encoding (SENSE) (1) and
generalized autocalibrating partially parallel acquisitions
(GRAPPA) (2) are the most widely used ones because of
their simplicity and image reconstruction performance.

SENSE and GRAPPA represent two classes of meth-
ods with numerous extensions and variants for different
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applications. The SENSE class methods, also known as the
image domain methods, include such methods as paral-
lel imaging with localized sensitivities (3) and sensitivity
profiles from an array of coils for encoding and reconstruc-
tion in parallel (4). The SENSE class methods compute
the coefficients in the image domain. The GRAPPA class
methods, also known as the k-space methods, include
simultaneous acquisition of spatial harmonics (5), autocal-
ibrating simultaneous acquisition of spatial harmonics (6),
variable density autocalibrating-simultaneous acquisition
of spatial harmonics (7), and the two-dimensional (2D)
GRAPPA methods (8–10). While the calibration step in
these methods, e.g., in simultaneous acquisition of spatial
harmonics, may rely on the image domain coil sensitivities,
the calculated coefficients are in k-space.

Compared with the k-space methods, the image domain
methods normally require pre-estimated coil sensitivity
profiles and then invert the sensitivity profiles to recon-
struct an image. These methods can achieve an optimal
reconstruction, provided the coil sensitivity profiles can
be obtained precisely. However, the estimated sensitivity
profiles often contain errors caused by noise, sensitiv-
ity misregistration, Gibbs ringing, and other estimation
uncertainties (11,12), which reduce the final image recon-
struction quality. Furthermore, the SENSE reconstructions
are also limited in the field-of-view selections (13,14).
The k-space methods avoid the explicit sensitivity esti-
mation and inversion procedure by estimating directly
an inverse filter (reconstruction model) using autocali-
brating signals (ACS). The ACS are phase-encoding lines
acquired at the Nyquist rate, with the phase-encoding
gradient intervals set to satisfy the full field of view condi-
tion, which renders the k-space fitting of the inverse filter.
Filtering the downsampled k-space signal through the
inverse filter, the unacquired k-space data can then be esti-
mated. This procedure is also known as the k-space fitting
process.

The original GRAPPA method (2) used k-space fitting
only along the phase encoding direction and was later
extended to the k-space time domain (k-t) (15,16). The
spatial 2D version of GRAPPA (8–10) extended the origi-
nal GRAPPA fitting process to include both frequency and
phase-encoding directions. It is equivalent to a 2D filter-
ing and significantly improves the image quality. Despite
the continuous improvement of image quality in acceler-
ated parallel imaging over the last decade, image artifacts
such as aliasing and noise are still quite obvious when com-
pared with conventional full field-of-view acquisitions,
especially at high acceleration rates.

Using the filter bank theory, the authors have recently
analyzed the difficulties associated with parallel MR image
reconstruction (11,17). It has been shown that the degraded
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image quality is partially due to the use of suboptimal
reconstruction models in current reconstruction meth-
ods. Therefore, the development of optimal reconstruc-
tion models presents an important direction for further
improvement of image quality. Based on these analy-
sis results, this paper introduces a 2D infinite impulse
response (IIR) model of inverse filter to replace the finite
impulse response (FIR) model currently used in the
GRAPPA class methods. It will be shown that the pro-
posed model captures more precisely the correlation of
k-space data points and approximates more closely the
perfect inversion of parallel imaging process. Using the
proposed model, a new generalized image reconstruction
method is presented for accelerated parallel MRI and com-
pared mathematically and experimentally with the conven-
tional GRAPPA to demonstrate its advantages in reducing
reconstruction errors.

THEORY

Linear System View of Parallel MRI Reconstruction

An L-receive coil Fourier encoded MRI process is defined
as

sl(ky , kx ) =
Npe−1∑
ny =0

Nfe−1∑
nx=0

Cl(ny , nx )P(ny , nx ) exp
{

j
2π

Npe
ky ny

}

× exp
{

j
2π

Nfe
kxnx

}
, 0 ≤ ky ≤ Npe − 1, 0 ≤ kx ≤ Nfe − 1,

[1]

where sl(ky , kx ) is the lth coil received k-space signal. Func-
tion Cl(ny , nx ) represents the sensitivity profile of the lth
channel, and P(ny , nx ) is the image function that is dig-
itized by the encoding process. The values Nfe and Npe

are the total numbers of frequency-encoding and phase-
encoding steps in a full field of view, respectively. The
variables ky and kx are k-space indices along the phase-
and frequency-encoding directions, and the variables ny

and nx are spatial indices in the image domain along the
vertical and horizonal directions.

By the circular convolution theorem (18), for the 2D
discrete Fourier transform, Eq. 1 can be represented by a
convolution operator �l : p �→ sl , which is the imaging
operator and defined as

�l : sl(ky , kx ) = cl(ky , kx ) * p(ky , kx ), [2]

where * denotes the 2D convolution operation, and
cl(ky , kx ) and p(ky , kx ) are the 2D Fourier transforms of
Cl(ny , nx ) and P(ny , nx ) given, respectively, by

cl(ky , kx ) =
Npe−1∑
ny =0

Nfe−1∑
nx=0

Cl(ny , nx ) exp
{

j
2π

Npe
ky ny

}

× exp
{

j
2π

Nfe
kxnx

}
,

p(ky , kx ) =
Npe−1∑
ny =0

Nfe−1∑
nx=0

P(ny , nx ) exp
{

j
2π

Npe
ky ny

}

× exp
{

j
2π

Nfe
kxnx

}
.

In the systems theory context, Eq. 2 is a 2D single-input
multioutput system, with input signal p(ky , kx ), output
signal sl(ky , kx ), and the system impulse response cl(ky , kx ).

The above discussion describes the parallel imaging
without accelerated acquisition. In an M -fold accelerated
imaging and acquisition, k-space data are acquired every
M phase lines. The signal thus acquired in each channel is
given by

sl(Mky , kx )
�= sl(ky , kx ) ↓M = cl(ky , kx ) * p(ky , kx ) ↓M , [3]

where ↓M denotes the M -fold downsampling operator, with
M ≥ 1 being integer and 0 ≤ Mky ≤ Npe − M .

The objective of image reconstruction is to find a func-
tion that maps the acquired (downsampled) k-space data
sl(Mky , kx ), l = 1, . . . , L, from all channels to a desired
complete set of k-space input data p(ky , kx ). Kholmovski
and Samsonov (19) cast the GRAPPA reconstruction into
an inverse operation of Eq. 3, and the difference of SENSE
and GRAPPA was discussed from the inverse operator
perspective (20).

2D GRAPPA

Denote �l the inverse operator in the GRAPPA class meth-
ods that maps the downsampled sl(Mky , kx ) from all the
channels to a complete set estimated sl(ky , kx ) of an indi-
vidual channel. Mathematically, �l is defined as (2,9)

�l : ŝl(Mky − m, kx )

=
L∑

j=1

Na∑
b=−Nb

Ha∑
h=−Hb

gl,m(j, b, h)sj (M (ky − b), kx − h), [4]

Na, Nb, Ha, Hb ≥ 0, m = 1, . . . , M − 1,

where gl,m(j, b, h) are the coefficients of a fitting kernel,
Nb and Na define the size of the kernel along the phase-
encoding direction, and Hb and Ha define the kernel size
along the frequency-encoding direction. For Hb = Ha = 0,
Eq. 4 gives the original GRAPPA (2); otherwise, it represents
the 2D GRAPPA methods (8,9).

As detailed elsewhere (2,9), the coefficients gl,m(j, b, h)
are pre-estimated from a set of ACS (2), by using standard
estimation methods such as the least squares algorithm,
and are used in Eq. 4 to compute ŝl(Mky − m, kx ) for
m = 1, . . . , M − 1. The computed ŝl(Mky − m, kx ) are then
combined with the acquired dataset sl(Mky , kx ) to form an
estimate of the complete k-space data ŝl(ky , kx ) for each
channel, with ŝl(Mky , kx ) = sl(Mky , kx ). The ŝl(ky , kx ) thus
obtained are taken as an estimate of p(ky , kx ) from the lth
coil, denoted as p̂l(ky , kx ) below.

p̂l(ky , kx ) = ŝl(ky , kx ). [5]
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The 2D Fourier transform of p̂l(ky , kx ) gives the subim-
age P̂l(ny , nx ) from the lth coil, and the square root sum
of squares of subimages P̂l(ny , nx ) from all the coils is
used to reconstruct a final image, given as P̂(ny , nx ) =√∑L

l P̂2
l (ny , nx ).

From Eqs. 3, 4 and 5, it is evident that �l given in Eq.
4 functions as an inverse operator that maps the down-
sampled sl(Mky , kx ) from all the channels to a complete
set estimated sl(ky , kx ) of an individual channel, and then
to the estimated Pl(ny , nx ) of the channel. Further, Eq. 4
clearly shows that the inverse operators �l in GRAPPA are
in fact the 2D FIR filters in the terminology of systems and
signals because the structure of Eq. 4 is analogous to the
structure of FIR filter function, or the 2D moving average
(MA) estimators in the terminology of statistical analy-
sis (18). For this reason, �l will also be referred to as an
inverse filter in the sequel.

IIR GRAPPA

Using the filter bank theory, the authors have recently ana-
lyzed the difficulties in image reconstruction of parallel
MRI (11,17). It is shown that the FIR or equivalently the
MA structure in the inverse filter Eq. 4 is a major reason for
the degraded image quality. To overcome this difficulty, the
following new structure is proposed for the inverse filter
used in GRAPPA class methods:

�l : ŝl(Mky − m, kx )

=
L∑

j=1

Qa∑
q=−Qb

Ra∑
r=−Rb

al,m(j, q, r)ŝj (Mky − m − q, kx − r)

+
L∑

j=1

Na∑
b=−Nb

Ha∑
h=−Hb

gl,m(j, b, h)sj (M (ky − b), kx − h), [6]

m = 1, . . . , M − 1, Qa, Qb, Ha, Hb, Na, Nb, Ha, Hb ≥ 0,

al,m(j, 0, 0) = 0, ŝl(Mky , kx ) = sl(Mky , kx ).

Compared with Eq. 4, the proposed structure has a new
part that represents the linear dependence of the cur-
rent estimates on the “previous (neighboring)” estimates,
with its structure controlled by the values of Qb, Qa,
Rb, and Ra. When either Qb or Qa is chosen as zero,
this new part becomes (causal or anticausal) autore-
gression (AR) of the estimate ŝl(Mky − m, kx ), which,
together with the original MA part in Eq. 4 constitutes
a 2D autoregression moving average (ARMA) estimator
of the unacquired k-space data sl(Mky − m, kx ). When
Qb and Qa are both nonzero, Eq. 6 becomes a noncausal
2D filter. The values of Qb and Qa define the order of
the AR part in the phase-encoding direction, and Rb
and Ra are the order of the AR part in the frequency-
encoding direction. Similarly to the conventional GRAPPA,
the kernel coefficients al,m(j, q, r) and gl,m(j, b, h) can be
obtained by using ACS lines and standard parameter esti-
mation methods such as the regularized least squares
algorithm (21).

As a filter, Eq. 6 has an IIR when Qb �= 0 and/or Qa �=
0. This may be understood by considering an impulse

FIG. 1. Comparison of GRAPPA and IIR GRAPPA in a 3-fold acceler-
ated imaging example. Vertical direction is the frequency-encoding
direction, and the horizontal direction is the phase-encoding direc-
tion. The coil direction is perpendicular to the paper. The dashed
arrows are the fitting coefficients of a 2D GRAPPA method; the
dashed plus solid arrows are the fitting coefficients of an IIR GRAPPA
method.

function as the input, Eq. 6 will result in the output that
will have an infinite length of response. Thus, it gives rise
to a new reconstruction method named IIR GRAPPA in
this paper. For Qb = Qa = Rb = Ra = 0, Eq. 6 reduces
to Eq. 4. Therefore, IIR GRAPPA is a generalized recon-
struction method that includes original GRAPPA (2) and
2D GRAPPA (8,9) as special cases.

Figure 1 shows a 3-fold accelerated imaging example
for a visual comparison of the difference between IIR
GRAPPA and 2D GRAPPA. As seen from the figure, 2D
GRAPPA uses only the acquired data to reconstruct (esti-
mate) the unacquired data, while IIR GRAPPA uses both the
acquired and estimated data in reconstruction. As analyzed
and experimentally demonstrated in the Discussion and
Results sections, this key difference renders IIR GRAPPA a
better reconstruction performance.

Because IIR GRAPPA uses the estimated data in recon-
struction, the initial values of these estimates are needed
in order to use the AR part in Eq. 6. There are in general
two approaches to obtain initial values. The first approach
is the “one-step” approach, which uses directly the data in
ACS lines (normally in the center of the k-space) as the ini-
tial values. In this case, the reconstruction of the left half of
the k-space as shown in Fig. 1 should have Qb = 0 because
all the available ACS data are on its right side (from the
reader’s view direction). Similarly, Qa = 0 should be used
for the right half of the k-space. The other approach is the
“two step” approach. In this approach, the MA fitting is
first done to obtain initial estimates of unacquired k-space
data. With these estimated initial values, the AR filtering
can then be performed to obtain the final reconstruction.
In this two-step approach, Qa and Qb can be chosen as
nonzero values for the reconstruction of the both sides of
k-space.
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MATERIALS AND METHODS

Data Acquisitions

A brain imaging dataset was acquired to test the perfor-
mance of the proposed method for high-resolution brain-
imaging applications. The k-space data were acquired
from a Siemens Tim Trio 3T system with a Siemens 12-
channel head matrix coil (Siemens Medical Solutions,
Erlangen, Germany). The imaging parameters were as fol-
lows: axial 2D gradient recall echo, T*

2 -weighted imaging
with echotime = 45 ms, pulse repetition time = 1000 ms
approximate, flip angle = 45◦, slice thickness = 2.5 mm,
field of view = 240 mm × 180 mm, Nfe = 448, Npe = 384.
Full k-space data were acquired for each channel and were
then manually uniformly downsampled to simulate 3- and
4-fold accelerated imaging. The ACS lines were chosen at
the 64 (16.67% Npe), 48 (12.50% Npe) and 32 (8.33% Npe)
locations in the central k-space.

Evaluation of Reconstruction Methods

The 2D GRAPPA (8,9) and IIR GRAPPA algorithms were
both implemented in the Matlab programming environ-
ment (Mathworks, Natick, MA) for comparison. For both
methods, the subimages are combined with the square
root sum of squares method. The full field of view refer-
ence image I ref without accelerated imaging was calculated
using square root of sum of squares of all of the receiver
coil images. The root mean squared (RMS) error of a
reconstructed image was calculated from

RMS =

√√√√√ 1
Nfe × Npe

Npe∑
i=1

Nfe∑
j=1

∣∣I recon
i,j − I ref

i,j

∣∣2
∣∣I ref

i,j

∣∣2 [7]

where {i, j} are pixel indices. The reconstruction error
(ERR) image was calculated from

ERR = |I recon − I ref | [8]

which is the absolute difference between a reconstructed
image and the reference image.

Determination of Reconstruction Kernel Size

The reconstruction kernel size was determined by compar-
ing the RMS errors of reconstruction under different kernel
sizes. A larger kernel size generally results in less recon-
struction error, but it increases the kernel complexity and
requires more kernel coefficients. As a result, more ACS
data are required to obtain a decent estimate of the ker-
nel coefficients, and more time is needed to estimate the
coefficients and to reconstruct the unacquired k-space data.
This may be understood from solving overdetermined sys-
tems perspective. With increased numbers of unknowns,
more equations are generally required to obtain an accurate
and robust solution. A tradeoff is thus always necessary.
To select the reconstruction kernels for our experiments,
2D GRAPPA and IIR GRAPPA were evaluated under differ-
ent kernel sizes, using a 3-fold accelerated acquisition with
12% ACS lines of the above acquired data.

As shown in Eq. 6, the kernel size in IIR GRAPPA is
jointly determined by the size of the IIR (AR) part (Qa+Qb)×

FIG. 2. Comparison of reconstruction errors of 2D GRAPPA and IIR
GRAPPA in a 3-fold accelerated acquisition under different MA size
(Na + Nb) × (Ha + Hb). For IIR GRAPPA, the size of IIR part was
constrained to be (Qa + Qb) × (Ra + Rb) ≤ (Na + Nb) × (Ha + Hb).

(Ra + Rb) and the size of the MA part (Na + Nb) × (Ha + Hb),
while in 2D GRAPPA it is determined only by the size of
the MA part (Na + Nb) × (Ha + Hb). To make a meaning-
ful comparison, these two methods were evaluated against
different sizes of (Na + Nb) × (Ha + Hb), and for each
(Na + Nb) × (Ha + Hb), the corresponding size of the IIR
part, (Qa +Qb)× (Ra +Rb), in IIR GRAPPA was constrained
to be (Qa + Qb) × (Ra + Rb) ≤ (Na + Nb) × (Ha + Hb).
Thus, the two methods were compared under the con-
dition that they both use the same number of acquired
data points in reconstruction, which is equal to the size
(Na + Nb) × (Ha + Hb).

By considering both reconstruction errors (presented in
Fig. 2 of the Results section) and computation complexity,
the following kernel sizes were selected for the experiments
to evaluate the optimum between image quality, robust-
ness, and computational expense: For 2D GRAPPA, the MA
part was (Na +Nb)×(Ha +Hb) = 4×10; for IIR GRAPPA, the
MA part was the same as 2D GRAPPA, and the IIR part was
(Qa +Qb)× (Ra +Rb) = 3×10, which satisfies the condition
(Qa + Qb) × (Ra + Rb) ≤ (Na + Nb) × (Ha + Hb).

Regularized Least Squares Algorithm

As commonly used in practice, the regularized least
squares algorithm was implemented in both 2D GRAPPA
and IIR GRAPPA to obtain the kernel coefficients. The trun-
cated singular value decomposition (SVD) approach (21)
described in the Appendix was adopted, and the regular-
ization threshhold was empirically chosen by observing the
RMS reconstruction errors of both methods with different
kernel sizes.

Initial Values in Reconstruction

For simplicity, the one-step approach as described in The-
ory section was used throughout the experiments to obtain
the initial values in reconstruction. This was based on the
observation that for the acquired dataset, no significant
difference was observed from using the two-step approach.

RESULTS

Reconstruction Error Under Different Kernel Sizes

Figure 2 shows the RMS reconstruction errors of 2D
GRAPPA and IIR GRAPPA under different kernel sizes. As
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FIG. 3. Reconstructed images of 2D GRAPPA and IIR GRAPPA using the 3-fold accelerated imaging. For 2D GRAPPA, (Na+Nb)×(Ha+Hb) =
4×10, and for IIR GRAPPA, (Na +Nb)×(Ha +Hb) = 4×10 and (Qa +Qb)×(Ra +Rb) = 3×10. a: The reference image; (b-g) the reconstructed
images using a different percentage of ACS lines. The second row shows corresponding enlarged regions in the inset box from the top
panel. The last row plot line profiles from A to B of each image. Images are shown in the same grayscales.

seen from the plots, the errors for both methods decrease
dramatically as the MA size (Na +Nb)× (Ha +Hb) increases
from 4 × 1 to 4 × 10. However, as the kernel size fur-
ther increases, the reconstruction errors for both methods
decrease slowly and tend to stabilize at different minimum
values when extremely large kernel sizes are used. It is
evident that with all the MA sizes, or equivalently with
the same numbers of acquired data points, IIR GRAPPA
produces considerably fewer reconstruction errors than
2D GRAPPA does. With significantly larger MA size, 2D
GRAPPA may be able to match the performance of IIR
GRAPPA at some smaller MA sizes, e.g., the performance
of 2D GRAPPA at the MA size 8 × 16 is close to that of IIR
GRAPPA at the MA size 4 × 8. However, with all the MA
sizes tested, 2D GRAPPA is unable to match the minimal
error achieved by IIR GRAPPA at the MA size 8 × 16.

Impact of Regularization Threshold

For the truncated SVD regularization described in the
Appendix, the regularization threshold was empirically
chosen as 0.5×10−3 for both 2D GRAPPA and IIR GRAPPA
methods. With further increase of the threshold, strong
aliasing was observed and the RMS error plots in Fig. 2
showed an “U” shape, as described in Nana et al. (22), for
both methods. This indicates that if the kernel size and
regularization threshold are both large, the estimation of
kernel coefficients will be too poor to use for either method.
Nevertheless, it was observed that the IIR GRAPPA method
showed consistently less reconstruction error at different
levels of regularization, except when a very large regular-
ization threshold was used, and no difference was observed
between the two methods.

Comparison of Reconstructed Images

The dataset in this experiment uses a long echo time, which
reduces the inherent signal to noise ratio (SNR) in each
sampled voxel and enables an evaluation of the perfor-
mance of reconstruction algorithms. Both 3-fold (Fig. 3)

and 4-fold (Fig. 4) accelerated acquisitions were used with
varying ACS lines. In both figures, the IIR GRAPPA images
have significantly improved overall image quality com-
pared with the 2D GRAPPA images. The improved image
quality can be observed clearly in the enlarged views and
the plotted line profiles crossing two cortical regions. The
IIR GRAPPA method has significantly reduced overall RMS
errors in the reconstructed images (Figs. 5 and 6).

For the group of 3-fold acceleration (Fig. 3), the IIR
GRAPPA image using 16.67% Npe as ACS shows the best
reconstruction quality throughout the image (Fig. 3c). With
other numbers of ACS lines, the IIR GRAPPA images con-
sistently provide noticeable reduction in reconstruction
errors (i.e., noise + aliasing artifacts) when compared with
its 2D GRAPPA counterparts. Consider the line profile from
point A to point B, which traverses two cortical areas (high
intensity) and a white matter area (low intensity). As can be
observed in the pixel intensity against pixel location plots,
all images using 3-fold acceleration identify the peaks (i.e.,
the cerebrospinal fluid and surrounding gray matter). In
the low-signal white matter regions (the middle area in the
plots), both reconstruction methods produce increased sig-
nal variance caused by reconstruction errors; however, less
fluctuation is observed in the IIR GRAPPA plots. Therefore,
the images produced by IIR GRAPPA have clearer and more
traceable cortical structures than those by GRAPPA.

The advantage is even more pronounced for a 4-fold
acceleration (Fig. 4). The maximum acceleration occurs
when as few as only 8.33% ACS lines are used (Fig. 4e,f).
In this situation, the 2D GRAPPA image (Fig. 4e) fails to
show the cortical structures and white matter areas as seen
in both the enlarged view and the line plot, while in the IIR
GRAPPA image (Fig. 4f), the major tracks of cortical regions
are still evident. For other images, the IIR GRAPPA images
clearly show less reconstruction error than the 2D GRAPPA
images.

The reconstruction error images (Fig. 5) and the over-
all RMS comparison (Fig. 6) show the difference between
the reconstruction errors of 2D GRAPPA and IIR GRAPPA.
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FIG. 4. Reconstructed images of 2D GRAPPA and IIR GRAPPA using 4-fold accelerated imaging. For 2D GRAPPA, (Na + Nb) × (Ha + Hb) =
4 × 10, and for IIR GRAPPA, (Na + Nb) × (Ha + Hb) = 4 × 10 and (Qa + Qb) × (Ra + Rb) = 3 × 10. The first row is the reconstructed images
using a different percentage of ACS lines. The second row shows the enlarged regions in the inset box. The last row shows the line profiles,
as indicated in Fig. 3a. Images are shown in the same grayscales.

The difference is more noticeable as the acceleration factor
increases and the number of ACS lines decreases. This pat-
tern is expected because an IIR filter can use fewer data to
approximate a relatively complex system compared with
an FIR filter.

FIG. 5. Reconstruction error images of 2D GRAPPA and IIR
GRAPPA. For 2D GRAPPA, (Na + Nb) × (Ha + Hb) = 4 × 10, and for
IIR GRAPPA, (Na + Nb) × (Ha + Hb) = 4 × 10 and (Qa + Qb) ×
(Ra + Rb) = 3 × 10. a,b: GRAPPA and IIR GRAPPA using 16.67%
ACS lines, respectively; (c,d) GRAPPA and IIR GRAPPA using 8.33%
ACS lines, respectively. The second and the fourth rows are error
images.

DISCUSSION

The above experiment results demonstrate that the IIR
GRAPPA method outperforms the current GRAPPA method
by effectively suppressing noise and aliasing artifacts. The
source of this improvement is the IIR inverse filter given in
Eq. 6.

In Chen et al. (11,17), complete mathematical deriva-
tion and analysis of the IIR GRAPPA are provided for the
one-dimensional case with Rb = Ra = Ha = Hb = 0.
These results carry over easily to the 2D case presented

FIG. 6. Comparison of reconstruction errors of 2D GRAPPA and IIR
GRAPPA with different acceleration factors and percentage of ACS
lines. a: Three-fold acceleration and (b) 4-fold acceleration.
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above. Discussed below are the necessity and advantages of
IIR GRAPPA from three aspects: systems theory, statistical
analysis, and optimization.

From the systems theory viewpoint, an optimal inverse
operator � must achieve perfect inversion of the imaging
process and downsampling operation given in Eq. 3. Such
an optimal � is generally in the form of IIR and can have an
FIR structure if and only if Eq. 3 is equivalent to a unimod-
ular oversampled filter bank (11,17,24,25). For the parallel
MRI system, this unimodular condition in general cannot
be assumed; hence, the optimal �l should generally be IIR.

From a statistical analysis point of view, the closer two
points in k-space, the stronger the correlation of the k-space
data sl(ky , kx ) at these two points. Therefore, the surround-
ing k-space data carry more information concerning an
unacquired datum than those farther away and should
contribute to the estimation even if they themselves are
estimated. This is the central concept of AR that is theoret-
ically and practically proven to be effective and is widely
used in practice (23). This can be further understood from
the pattern of cl(ky , kx ), the convolution kernel in Eq. 3.
The magnitudes of cl(ky , kx ) are much larger in a small
area around the origin than in other regions. This indicates
that the adjacent data points in the convolution output
sl(ky , kx ) are highly correlated. Hence, when estimating an
unacquired datum, one should make use of all surrounding
data points, even if these are estimated, rather than rely on
only the acquired ACS data, which may be relatively dis-
tant. As seen from Eq. 6 and Fig. 1, the data points in AR
terms can be much closer to the interpolant than those in
MA terms and hence more correlated with it, especially at
high acceleration rates. This is clearly evidenced from the
experimental results: a large-size MA term in 2D GRAPPA
does not reduce much reconstruction error since it only
includes more acquired data, which are farther away from
and hence less correlated with the interpolant. In contrast,
a small-size AR (IIR) term in IIR GRAPPA does make a con-
siderable difference since it includes the estimated data
which are closer to and hence more correlated with the
interpolant.

From an optimization point of view, the IIR inverse fil-
ters with both AR (IIR) and MA coefficients belong to the
solution set that includes FIR filters as a subset. Therefore,
the proposed IIR GRAPPA method searches for the optimal
inverse filter in a larger solution set and achieves a bet-
ter performance than the conventional GRAPPA methods,
which are confined to the subset of FIR solutions. Iterative
GRAPPA methods (26,27) have recently shown improved
image quality compared with traditional GRAPPA by itera-
tively searching a better FIR reconstruction filter using the
reconstructed data, whereas the IIR GRAPPA approach uses
IIR reconstruction filters to capture the correlation between
the unacquired data points. The iterative approach can
also be combined with IIR GRAPPA to search iteratively
a better IIR reconstruction filter. Such a combination can
potentially further improve the image quality in parallel
MRI.

The reconstruction quality of GRAPPA methods also
depends on the size and geometry of the receiver coils. This
paper demonstrates the advantage of IIR GRAPPA using rel-
atively large coils. In the situations of small coils or the coils
being very close to the object, the k-space correlation tends

to spread over a larger region. To represent such correla-
tion, the reconstruction filter needs to have longer memory
in the kx and ky directions. In traditional GRAPPA, this
longer memory can be provided only by a larger kernel size
of the FIR reconstruction filter, while in IIR GRAPPA, it can
be provided by a larger kernel size of the FIR part, as well
as the long memory of the IIR part. Because the IIR part has
infinite memory, it has the potential to provide the long
memory required for capturing the wider spread of corre-
lations in k-space. Further, the benefit of including an IIR
part still holds in these situations because it captures the
significant correlations surrounding the unacquired points,
which are absent in the traditional GRAPPA methods. It
is evidenced in the implementation of IIR GRAPPA using
a 32-channel head coil, where IIR GRAPPA outperforms
GRAPPA reconstructions with appropriate filter sizes.

The image quality improvement in IIR GRAPPA is
achieved at the expense of slightly increased reconstruc-
tion time because only a few extra coefficients are esti-
mated. However, if reconstruction time is crucial, a reduc-
tion in FIR kernel size can be used to compensate the
computation time introduced by the IIR kernel. This is
evidenced from Fig. 2. Alternatively, the computationally
efficient hybrid-space implementation of GRAPPA can be
used (28). The hybrid-space methods transform the coeffi-
cients into image domain and then perform reconstruction.
The proposed IIR framework can also be implemented in
this way since the frequency response (image pixel intensi-
ties) of a discrete IIR filter is well defined and can be readily
calculated. Different from the FIR situation where the DFT
can be used directly for the conversion, the conversion for
IIR filter should use the transfer function matrix of the filter
to obtain the (complex valued) frequency response matri-
ces in the image domain. The details of this implementation
are beyond the scope of this paper and will be presented
elsewhere.

Stability is important when a signal of infinite length is
filtered by an IIR filter. If the IIR filter is unstable, the filter
output will diverge or oscillate as the number of updates
approaches infinity. However, in contrast to this type of
applications, the aim of the IIR inverse filter in Eq. 6 is
to minimize the sum of squares of reconstruction errors
of a limited number of output values. The input to the
filter always has a limited length, and hence the num-
ber of updates in the filtering operation is always limited.
Therefore, the stability of an image reconstruction is less
important than the accuracy of the reconstruction. If the
reconstruction error produced by an inverse filter is large,
we will always need reconsider the parameters or structure
of the filter regardless of its stability.

Nevertheless, to guarantee the reconstruction stability,
the filtering process can always be reversed for the unstable
poles to form a stable noncausal filter. This is a valid pro-
cedure because the length of reconstructed data is always
limited (29). Alternatively, stability-constrained estima-
tion of IIR filter coefficients can be used to guarantee the
stability.

CONCLUSION

Built upon the analysis results of Chen et al. (11,17), this
paper has introduced a 2D IIR model of inverse filter to
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replace the FIR model currently used in GRAPPA class
methods. The proposed model captures more precisely
the correlation of k-space data points and approximates
more closely the perfect inversion of parallel imaging pro-
cess, resulting in a novel generalized image reconstruction
method for accelerated parallel MRI. This new reconstruc-
tion method includes conventional GRAPPA class methods
as special cases and has a new IIR data estimation mech-
anism for effective improvement of image quality. The
experiments on in vivo MRI data have shown that the pro-
posed method significantly reduces reconstruction errors
compared with GRAPPA, particularly at the higher acceler-
ation rates. Further improvements have also been observed
when multislice data are used to fit a three-dimensional
spatial or spatial + temporal IIR inverse filter. The results
will be reported elsewhere.

APPENDIX

Least Squares Parameter Estimation With Truncated SVD
Regularization

Equation 6 can be written in the matrix form

slm = �lmGlm, [A1]

where slm is a vector containing all the data for ŝl(Mky −
m, kx ), �lm is a matrix containing all the data for ŝj (Mky −
m − q, kx − r) and sj (M (ky − b), kx − h), and Glm is a vec-
tor containing all the kernel coefficients al,m(j, q, r) and
gl,m(j, b, h).

For the coefficient vector Glm, the least squares estima-
tion with truncated SVD regularization is given by

Glm =
X∑

i=1

1
σi

uH
i �lmvi , [A2]

where σi , ui and vi are obtained from the SVD of �lm given
as

�lm =
Y∑

i=1

uiσivH
i , [A3]

σi are the singular values of �lm satisfying σi ≥ σj for i < j,
and (·)H denotes the complex conjugate transpose.

For X = Y , Eq. A2 gives the standard least squares
estimation. For X < Y , it gives the least squares esti-
mation with truncated SVD regularization. The level of
regularization is controlled by X , which is determined by
neglecting the σi that are less than or equal to a thresh-
old. A larger threshold means higher-level regularization,
and vice versa. For more details, see Qu et al. (21) and the
references therein.
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