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Temporal Filtering Effects in Dynamic Parallel MRI

Martin Blaimer,' Irene P. Ponce,? Felix A. Breuer,' Peter M. ]akob,1’2

Mark A. Griswold,® and Peter Kellman®

Autocalibrated parallel MRI methods such as TSENSE or k-t
SENSE have been presented for dynamic imaging studies as
they are able to provide images with high temporal resolution.
One key element of these techniques is the temporal averag-
ing of the undersampled raw data to obtain an unaliased
image. This image represents the temporal average (also
known as direct current, DC) and is used to derive the recon-
struction parameters. In this work, we show that aliasing
artifacts can be introduced in the DC signal obtained from the
undersampled raw data. These artifacts lead to undesired
temporal filtering effects when the DC signal is used for coil
sensitivity calibration or when the DC signal is subtracted
from the raw data. It is demonstrated that the temporal
filtering effects can be reduced significantly by filtering
the DC signal. Magn Reson Med 66:192-198, 2011. © 2011
Wiley-Liss, Inc.
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A significant scan time reduction and thus higher frame
rates in dynamic imaging can be achieved by parallel
MRI (pMRI) methods. Dedicated reconstruction algo-
rithms [e.g., sensitivity encoding (SENSE) (1), general-
ized autocalibrating partially parallel acquisitions
(GRAPPA) (2)] use spatial coil sensitivity variations in
an array of multiple receiver coils to obtain artifact-free
images from undersampled raw data.

Autocalibrated dynamic pMRI techniques such as
TSENSE (3), TGRAPPA (4), k-t SENSE (5), or k-t
GRAPPA (6) use time interleaved acquisition schemes
(also known as k-t sampling). For example, in TSENSE
an unaliased image with full resolution is derived by
temporal averaging of the aliased images. This image
represents the temporal average (also referred to as direct
current, DC) and is used to calculate the spatial coil
sensitivity maps that are required for image reconstruc-
tion. However, in TSENSE undesired temporal filtering
effects in the form of signal nulls in the temporal fre-
quency spectra of the reconstructed dynamic images
have been observed (7).
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The TGRAPPA (4) method works analogous to
TSENSE except for its use of a relatively low order k
space fitting for data reconstruction. In contrast to
TSENSE, TGRAPPA does not exhibit temporal filtering
of the dynamic images series but the signal-to-noise ratio
(SNR) of the reconstructed images may be reduced.

Additionally, k-t SENSE (5) has been presented for
dynamic imaging. In addition to pure coil sensitivity
encoding, a priori information about spatio-temporal
correlations is included in the reconstruction. The a
priori information is typically obtained from fully
encoded training data that is acquired by extra prescans
or by using a variable density (VD) acquisition scheme
(i.e., the central k space lines are fully encoded, whereas
the peripheral k space is undersampled). In the original
k-t SENSE approach, the DC is subtracted from the raw
data so that only the dynamics of the object are recon-
structed. In that way, the number of overlapping signal
containing pixels is reduced by removing static pixels
(8). However, undesired temporal filtering effects have
also been observed in k-t SENSE reconstructions (8,9).
In particular, signal nulls have been observed in the
temporal frequency spectra of k-t SENSE images (10,11)
analogous to TSENSE.

In this work, we describe the origin of the signal nulls
and demonstrate that the temporal filtering effects in
TSENSE and k-t SENSE can be reduced significantly
when the DC is filtered by an additional GRAPPA
reconstruction.

THEORY
Relationship between Data Sampling and the DC Signal

For a two-dimensional dynamic imaging experiment
with phase encoding along the k, direction and read-
out along the k, direction, the sampling function
E(ky.ky,t) describes how k space is sampled over time t.
It is a discrete delta function with unity values at sam-
ple locations and zero elsewhere (see Fig. 1a). In the
following, we assume that the temporal signal is band-
limited and is sampled adequately (i.e., has high
enough image frame rate) to represent the maximum
temporal frequency content. To investigate temporal fil-
tering effects, it is useful to represent the dynamics of
the object in r-f space. Here, the vector r = (x,y)
describes the spatial coordinates within the field-of-
view (FOV) in the image and f represents a temporal
frequency. For a time-interleaved sampling scheme
with acceleration factor R, the measured object
psub(X,y,f) in r-f space is given by the convolution of
the fully sampled object ps,n(x,y.f) and the point-spread
function, PSF = FT(E(ky.k,,t)), where FT represents a
Fourier transform (see Fig. 1a,b):
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FIG. 1. Schematic illustrating the relationship between data sampling and errors in the temporal average (also referred to as DC). a: The
sampling function describes those k-t positions where data is sampled. In this example, the data set is subsampled by a factor of R =
3. Filled circles represent sampled data and unfilled circles represent not sampled data. The 2D Fourier transform (FT) of the sampling
function yields the PSF. According to the PSF, a signal in y-f space will be the superposition of R = 3 signals in this example. b: For a
fully sampled data set, the unaliased object can be represented in the y-f space and the unaliased DCy,, signal can be obtained at tem-
poral frequency f = 0. However, when subsampling is performed, aliasing occurs in y-f space. The aliasing pattern is thereby deter-
mined by the PSF. As one can see, for the subsampled data the DCgq, signal at f = 0 is the superposition of DCy,; and R — 1 additional
signal components. c¢: According to the PSF multiple shifted replica of DCg,, exist in y-f space. Therefore, when DCg,, is subtracted

from the subsampled raw data, signal nulls at R temporal frequency positions are generated in y-f space.

psub(XLV?f) - PSF(X7.V7f) * pfull(X>.V>f)
R—-1

= b (xy — 0 QLS B) 1
n=0

The maximum sampled temporal frequency is given by
fmax- The symbol * represents a convolution.

In dynamic pMRI, the DC is typically obtained by tem-
poral averaging of the subsampled raw data. In r-f space,
the DC corresponds to the signal at temporal frequency
f =0 and according to Eq. 1 it can be written as:

DCsub(X7Y) = psub(X7Y7f = 0)

R-1
=> b (xy —n 1 n-Br) (2]
n=0

Thus, DCqup(x,y) is the superposition of the DC signal
from the fully sampled acquisition DCe(x, ¥) = pran(x,
v, f = 0) and signals from different locations within the
FOV as well as from different temporal frequencies:

R—-1
Dcsub(X7 y) = DCfull(X>y) + prull(xny — - %7 —n fmT‘x)

i 3

Equation 3 shows that moving structures result in R —
1 ghost artifacts in the DCg,, image. The intensities of
the artifacts depend on the profile of the temporal fre-
quency spectra of the moving structures.

Origin of Temporal Filtering Effects

The aliasing artifacts that are apparent in the DC lead to
errors in the coil sensitivity maps derived from DCg,p. In
such a case the aliased signals cannot be accurately
reconstructed. This causes inherent temporal filtering
effects as have been observed in TSENSE image series
(7). Spatial smoothing of the raw coil sensitivities
reduces the level of error to some extent.

Additional temporal filtering originates from the DC sub-
traction procedure as often used in k-t SENSE or k-t
GRAPPA, for example. The DCqy, signal is subtracted from
the raw data S(k,.k,.t) only at those sampled k-t positions
that are given by the sampling function. The raw signal after
DC subtraction can be formulated in k-t space as follows:

S_pc(ke, ky, t) = E(ky, ky, 1) - (S(ky, Ky, t) — DCyp (kx, k)
(4]

After applying FT on Eq. 4, the signal can be formu-
lated in r-f space:
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p—DC(X7Y7f) = PSF(X’Y7f) * (pfull(X7Y7f) - Dcsub(X7Y))
= psub(Xv.Vuf) - PSF(X7Y7f) *DCsub(Xv.V)

The term PSF(x,y,f) * DCgu(x,y) may be interpreted
as multiple replica of DCqy,. The PSF generates R — 1
additional replica of DCgy,, which are shifted with
respect to each other (see Fig. 1c):

(5]

PSF(X/_va) * Dcsub(X7.V) = Psub <X7Y —n '%7 —n fm%)

with n=0,1, ..., R—1 [6]

However, because PSF(x,y,f)*DCqp(x,y) is sub-
tracted from pg,(x,y.f) (see Eq. 5), the signal cancels out
at the temporal frequencies n .= with n = 0, 1,..., R —
1. The missing temporal frequencies cannot be recovered
by reconstruction algorithms and thus introduce artifacts
in the reconstructed image series.

In summary, there exist two sources for temporal filter-
ing effects in dynamic pMRI: errors in coil sensitivity
maps that are derived from DCg,, and signal nulls in
the temporal frequency spectra that are generated by
subtracting DCg,, from the raw data.

Reduction of Temporal Filtering Effects
using a GRAPPA Filter

In principle, the temporal filtering effects can be reduced
significantly by estimating the unaliased DGy, signal. As
TGRAPPA has been shown to exhibit only insignificant
temporal filtering effects, we propose to estimate DCpy;
by applying GRAPPA weights (derived from DCg,,) on
the DCgyp, signal. This is equivalent to the performance
of a TGRAPPA reconstruction and a subsequent temporal
averaging of the reconstructed full FOV time frames, but
it requires less computation time. It has been shown that
GRAPPA can be formulated as a spatial convolution
filter in the image domain (13). However, in contrast to a
simple spatial low pass filter, the GRAPPA filter addi-
tionally removes aliasing artifacts and thereby yields a
better estimation of the unaliased DCygy); signal.

METHODS
Simulations

Computer simulations were performed to study the tem-
poral filtering effects. Images from a numerical dynamic
phantom (matrix size 128 x 128, 20 time frames) were
multiplied with coil sensitivity maps from a circular
eight-channel receive array that were obtained from Biot-
Savart calculations. The images were Fourier-trans-
formed to yield data in the k-t space and Gaussian white
noise was added. The data were retrospectively sub-
sampled along the k, direction by an acceleration factor
of R = 4. Images from the numerical phantom can be
seen in Figure 2a.

To investigate temporal filtering effects due to coil
sensitivity errors, TSENSE reconstructions were per-
formed. High-resolution coil sensitivity maps (i.e.,
without spatial smoothing) were obtained from both
unfiltered and GRAPPA-filtered DC. Regularization was
not applied during image reconstruction. Temporal
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FIG. 2. a: Numerical dynamic phantom used in this study. Images
from two time frames and the signal over time (M mode) along the
dashed vertical line as indicated in the image are shown. Please
note, that the dashed line in Frame 1 is not part of the phantom.
b: In the simulation, an acceleration factor of R = 4 was applied
along the y dimension. As predicted in the Theory section, three
(R — 1) ghost artifacts are apparent in the unfiltered temporal
average image (left column). In contrast, no errors can be seen in
the GRAPPA-filtered temporal average image, but an SNR penalty
due to the spatially dependent GRAPPA g-factor can be observed
(right column). The error images (bottom row) are scaled by a
factor of 10 for better visibility.

frequency spectra from the reconstructed image series
were obtained by performing a Fourier transform along
the temporal dimension and by averaging the magnitude
spectra within a small region-of-interest (ROI).

The GRAPPA filter may lead to noise enhancement in
the DC image due to an increased geometry factor. To
study the effects of noise enhancement for coil calibra-
tion, TSENSE reconstructions were performed using
different noise levels (o = 0.1, 0.3, 1, and 3). The recon-
structed images were compared to the fully sampled
images. The root mean squared error of the reconstructed
images was computed for an ROI (15 x 15 pixels). The
mean SNR for the DC image was estimated for the same
ROI according to Ref. 12 considering the noise enhance-
ment due to the GRAPPA geometry factor (13) for the
filtered DC.

In addition, k-t SENSE reconstructions were performed
to study temporal filtering effects due to DC subtraction.
Prior information about spatio-temporal correlations was
obtained from 11 fully sampled training lines per time
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TSENSE (R=4)

FIG. 3. Computer simulation results illus-
trating temporal filtering effects due to
errors in the coil sensitivity maps. a:
TSENSE reconstructions (acceleration fac-
tor R = 4) and the signal-over-time (M
mode) along a vertical column as indicated
by the dashed line in the TSENSE image
are shown. The coil maps were obtained
from the unfiltered DC and show undesired
artifacts (see arrow). The temporal filtering
effects are also reflected in form of signal
nulls in the temporal frequency spectra.
The spectra were obtained from a ROI as
indicated by the small box in the TSENSE
image. The top row in (b) shows TSENSE
reconstructions for different noise levels
and in the bottom the reconstruction errors
are presented. The error images are scaled
by a factor of 5 for better visibility. The
reconstructions without filter exhibit arti-
facts (see arrows). ¢: The mean signal-to-
noise ratio (SNR) in the temporal average
image and the root mean squared error
(RMSE) of the TSENSE reconstructions
were calculated from a small ROI (15 x 15

a  Without Filter

Reconstruction

Error (x 5)

o

Without Filter

Noise Level =0.3

195

—Reference
—Without Filter
---|—With GRAPPA-Filter

M-Mode

~ Amplitude (dB)

B
F=1

-50
- fmax/2

- fmax/4 0 fmax/4

Temporal Frequency
GRAPPA Filter

Without Filter GRAPPA Filter

Noise Level =1.0

pixels) for different noise levels. The loca-
tion of the ROI is indicated by a small box
in (a).

T T 5 T T
~— | (Il Without Filter
Wl \Without Filter 2 || GRAPPAFI I
: Sl Fited. .|
__|CJGRAPPA Fite S4
=
R R | [ R 1
w
T SRRSPITSUTCIONY 1[I EEER
=
ol | — i
L B= W0
0.1 03 1.0 3.0 0.1 0.3 10 30
Noise Level Noise Level

frame. The coil sensitivity maps were derived from the
fully sampled data, so that temporal filtering effects due
to errors in the coil sensitivity maps could be avoided.
Both unfiltered and GRAPPA-filtered DC were subtracted
from the raw data during data reconstruction.

Experiments

In vivo experiments were carried out on two healthy
volunteers using clinical 1.5 T MRI scanners (Siemens,
Erlangen, Germany) equipped with an eight-channel
cardiac array (Nova Medical, Inc., Wilmington, MA) and
a 32-channel cardiac array (In Vivo Corporation, Or-
lando, FL). Dynamic cardiac imaging was performed by
using balanced steady state free precession sequences
[(a.k.a. bSSFP, TrueFISP, fast imaging employing steady
state acquisition (FIESTA), or fast field echo (FFE)]. The
experiments were approved by the Institutional Review
Board and according to the Institutional Review Board
regulations, informed consent was obtained from each
volunteer prior to the scan session.

The image reconstruction was done offline using
Matlab (Mathworks, Natick, MA). Prior to any further
processing, a noise prewhitening procedure (14) was per-
formed to generate uncorrelated virtual channels that
have noise with unit variance.

A fully sampled ECG-gated experiment was performed
during breath-hold using the 32-channel array. The
sequence parameters were: echo time = 1.37 msec, pulse
repitition time = 2.74 msec, flip angle = 50°, FOV =
270 x 360 mm?, slice thickness = 6 mm, matrix size =
150 x 192, 32 cardiac phases. The data set was
retrospectively subsampled to simulate an accelerated
acquisition (R = 4). Image reconstruction was performed
with k-t SENSE using 11 training lines. To exclude errors
in the coil sensitivity maps, the fully sampled data set
was used for coil sensitivity calibration. The unfiltered
DC as well as the GRAPPA-filtered DC were subtracted
from the raw data during the image reconstruction.

An accelerated (R = 4) free-breathing experiment was
performed using the eight-channel array. The sequence
parameters were: echo time = 1.37 msec, pulse repitition
time = 2.74 msec, flip angle = 50°, FOV = 270 x 360
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mm?, slice thickness = 6 mm, matrix size = 92 x 192,
128 time frames. The images were reconstructed with
TSENSE by using coil sensitivity maps that were
obtained both from the unfiltered DC and from the
GRAPPA-filtered DC.

RESULTS
Simulations

Errors in the DC image obtained from the subsampled
data are illustrated in Figure 2b. The figure shows the
unfiltered and the GRAPPA-filtered DC images from the
computer simulation. In addition, the differences
between unfiltered DC and DCy,;; and between GRAPPA-
filtered DC and DCp,y are presented. The DCg,; image
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Signal after
DCgrappa Subtraction

FIG. 4. Computer simulation
results demonstrating the intro-
duction of signal nulls along the
temporal frequency dimension f.
The top row shows the under-
sampled (R = 4) data in the y-f
plane (left). When the unfiltered
temporal average signal (DCgyp)
is subtracted from the data, sig-
nal nulls can be observed at R =
4 positions along the temporal
frequency dimension (middle).
The signal nulls can be avoided
when the GRAPPA-filtered tem-
poral average signal (DCgrappa)
is subtracted from the data
(right). The middle row shows
the data in the y-f plane after k-t
SENSE reconstruction. Except
for f = 0, the signal nulls cannot
be recovered by the reconstruc-
tion (middle). The reconstruction
using the GRAPPA filter does
not show the signal nulls (right).
The bottom row displays an
exemplary time frame recon-
structed with k-t SENSE without
(middle) and with GRAPPA filter
(right). Please note that the arti-
facts in the k-t SENSE recon-
struction (see arrows) are purely
due to the DCg,, subtraction
because the coil sensitivity maps
are derived from the full sampled
signal and thus can be assumed
to be without aliasing artifacts in
this example.

k-t-SENSE
with GRAPPA-filtered DC

k-t-SENSE
with GRAPPA-filtered DC

thereby represents the temporal average from the fully
sampled data set. While errors due to aliased signal com-
ponents are apparent in the unfiltered DC, no errors
can be observed in the GRAPPA-filtered DC. However,
spatially dependent noise enhancement can be noticed
in the GRAPPA-filtered image which is typical for
parallel imaging reconstructions (1,13).

The effect of errors in the coil sensitivity maps can be
seen in the TSENSE-reconstructed image series (Fig. 3a).
When the unfiltered DC is used for coil calibration, signal
nulls become apparent in the temporal frequency spectra.
The signal nulls appear at quarter band and band edge, but
they disappear when the GRAPPA filter is applied. As one
can see in the TSENSE images, the missing temporal
frequencies lead to artifacts in the reconstructed images.
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FIG. 5. Cardiac imaging results. a: Unfiltered and GRAPPA-filtered temporal average (DC) images are shown for a 32-channel array
(acceleration factor R = 4). Error images illustrate differences between reconstructed DC and DC obtained from the fully sampled
images. The error images are scaled by a factor of 10 for better visibility. The arrow indicates aliasing artifacts in the unfiltered DC
image. In addition, k-t SENSE reconstructions are shown. During reconstruction, the unfiltered DC as well as the GRAPPA-filtered DC
signal was subtracted from the raw data. The error images indicate differences between reconstructed and fully sampled images and
are scaled by a factor of 10. Signal nulls can be observed in the temporal frequency spectra from the reconstruction with unfiltered DC.
The spectra were obtained from a small region-of-interest (see box in image inset). b: Results from an accelerated (R = 4) acquisition
during free breathing obtained with an eight-channel array. TSENSE reconstructions from systolic and diastolic cardiac phases are
shown. The images without filter (top row) exhibit ghost artifacts as indicated by the arrows. The difference images between the recon-
structions with and without GRAPPA filter are scaled by a factor of five for better visibility (bottom row). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

The effect of noise on TSENSE image quality is shown
in Figure 3b. The images for moderate and high noise
levels exhibit artifacts when the unfiltered DC is used
for coil sensitivity calculation. In contrast, the TSENSE
images using the GRAPPA-filtered DC do not exhibit
such artifacts. In addition, the noise enhancement due
to the GRAPPA filter does not reduce the image quality
significantly. Please note that the SNR in some regions
of the GRAPPA-filtered DC image was very low (SNR ~
6 for noise level o = 1.0; see Fig. 3c) compared to the
SNR in the unfiltered DC image (SNR ~ 18 for noise
level ¢ = 1.0). Only for very high noise levels (o~ 3.0)
the error in the TSENSE images with GRAPPA filter is
increased compared to the images without filter (see
Fig. 3c).

Figure 4 illustrates the introduction of signal nulls
along the temporal frequency dimension when the unfil-
tered DC is subtracted from the undersampled data.
Except for the frequency f = 0, the signal nulls cannot be
recovered by a pMRI reconstruction such as k-t SENSE.
The signal nulls can be avoided when the GRAPPA-
filtered DC is subtracted and thus the k-t SENSE recon-
struction will yield a better reconstruction.

Experiments

Figure 5a illustrates that the artifacts in the unfiltered
DC are removed when the GRAPPA filter is applied. In
this example, the noise enhancement in the GRAPPA-
filtered DC is not noticeable. The artifacts in the k-t
SENSE reconstructions without GRAPPA filter can be
attributed to the signal nulls in the temporal frequency
spectra.

Results from an accelerated in vivo experiment are
presented in Fig. 5b. While ghost artifacts can be
observed in the TSENSE images with unfiltered DC,
these artifacts are not apparent in the TSENSE images
with GRAPPA filter.

DISCUSSION

In TSENSE, undesired temporal filtering occurs implic-
itly due to small localized errors in the coil sensitivity
maps that are derived from the DC image and in k-t
SENSE additional temporal filtering is introduced by
subtracting the DC from the raw data. In contrast,
TGRAPPA uses inherently spatial smoothed coil sensi-
tivity estimates and practically does not exhibit temporal
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filtering effects. The reason for this is that localized
errors in the DC image do not result in localized errors
in the image reconstruction but might lead to a small
degree of additional noise enhancement.

GRAPPA has been demonstrated to improve coil
sensitivity estimation for autocalibrated SENSE-based
reconstruction algorithms by enhancing the resolution of
the autocalibration data (15). Here, GRAPPA is used to
remove errors in the DC signal and by this means to pro-
vide better estimates of spatial coil sensitivity maps and
to avoid signal nulls in the temporal frequency spectra
when using DC subtraction. We have demonstrated by
computer simulations and by cardiac imaging experi-
ments that by using the GRAPPA-filtered DC, temporal
filtering effects can be reduced significantly. This is
particularly important when the dynamics of the objects
has a broad temporal frequency spectrum. In particular,
fast moving tissue with high signal intensity (such as fat
in cardiac imaging experiments using SSFP sequences)
can cause significant errors in the DC image.

As has been demonstrated by computer simulations
with varying noise level, the noise enhancement due to
the GRAPPA filter does not significantly reduce the
image quality. This can be explained because the SNR of
the DC image is generally higher than the SNR of a
single time frame. Thus, there should be sufficient SNR
for accurate coil sensitivity calibration because otherwise
the SNR of the reconstructed time frames might not be
sufficient for providing images with diagnostic value.
However, in the case of very high acceleration factors
(and hence very low SNR values) further improvements
might include polynomial or other fitting procedures (as
presented in Ref. 1) on the GRAPPA-filtered DC image to
mitigate the negative effects of noise for coil sensitivity
calibration. Thus, it can be said that the SNR in the fil-
tered DC image (and not the geometry factor alone) is
the limiting factor for the performance of the GRAPPA
filter.

In k-t SENSE, a VD sampling scheme is often applied
to acquire the training data interleaved with the under-
sampled data. In principle, both training and under-
sampled data can be used to compute the DC image. In
that way, the errors in the DC image could be corrected
to some extent. However, this approach does not guaran-
tee a sufficient suppression of errors in the DC image
because moving structures are typically represented by
higher spatial frequencies.

Although it is not clear if DC subtraction is generally
used in k-t SENSE, it is used in other dynamic pMRI
approaches. For example, DC subtraction has been
shown to improve the image quality in k-t GRAPPA
reconstructions (6). In addition, DC subtraction is useful
when the FOV is not appropriately chosen so that
prefolding artifacts occur in the full FOV (16,17). For
example, in dynamic cardiac MRI the chest wall which
normally contains the prefolding artifacts can be consid-
ered to be static and therefore it is removed prior to the
reconstruction.

Blaimer et al.

CONCLUSIONS

When deriving the DC signal by averaging the time
frames from a dynamic image series, aliasing artifacts are
introduced in the DC image. These artifacts lead to un-
desired temporal filtering effects when the DC image is
used for coil sensitivity calibration or when the DC sig-
nal is subtracted from the raw data. By applying a
GRAPPA filter to the DC signal, the temporal filtering
effects can be reduced significantly and in this way
result in a better image quality and a better temporal fi-
delity in TSENSE and k-t SENSE reconstructions.
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