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1. Introduction 

Parallel imaging exploits the difference in sensitivities between individual coil elements in a receive array to 
reduce the number of gradient encoding steps required for imaging. Parallel imaging was originally conceived [1-3] 
as a means of ultrafast imaging using a single echo readout, replacing gradient phase encoding entirely with spatial 
encoding using the coil sensitivities. However, it soon became apparent that there were fundamental as well as 
practical limitations to the effective number of encodes that were possible. This led to more realistic 
implementations [4-6] which used gradient phase encoding with a reduced number of steps, referred to as sub-
encoding. This tutorial will give an overview of the basic parallel MR imaging problem formulation and solutions 
for both image and k-space domain implementations. 

As shown in the simplified illustration of Figure 1, an array of receive coils with sensitivities, si(x,y,z) are used 
to acquire signals Gi from the sample volume with magnetization f(x,y,z). In the early published parallel MR 

literature, the signals 
,

( ) ( , ) ( , ) xjk x
i x i

x y

G k s x y f x y e−= ∑ consisted of a single readout (i.e, frequency encoded but 

without gradient encoding). The encoding (or forward problem) which was a combination of frequency 
encoding, xjk xe− , and spatial coil sensitivity encoding, 
si(x,y,z), may be represented in matrix form =G Sf after 
discretization. The desired magnetization image f(x,y) may 
be reconstructed by solving the inverse problem, 1−=f S G . 
Unique solution of the inverse problem requires that the 
number of independent equations (i.e., unique coils) is 
equal to the number of unknowns, in this case number of y-
values; with a greater number of equations (coils) the 
system of equations becomes over-determined and has a 
least squares solution or pseudo-inverse. Due to limitation 
on the number of coils which are effectively independent, 
multiple gradient encoding steps are employed in practice 
as described in the remainder of the tutorial. 

The chronology of parallel MR imaging is summarized in Fig. 2 using approximate dates. Following initial 
conceptual papers [1-6], practical implementations of parallel MR were presented by Sodickson and Manning [7] 

and Pruessmann, et al. [12]. Sodickson, et al. [7,8] proposed a 
method known as SiMultaneous Acquisition of Spatial 
Harmonics (SMASH) which is a k-space implementation of 
parallel MR imaging. Pruessmann et al. presented a general 
formulation and performance analysis of the image domain 
sensitivity encoding method (SENSE). A number of 
generalizations and extensions have been reported. The 
SMASH method has been generalized to provide tailored 
harmonic fits [9], coil-by-coil image reconstruction [10], and 
a generalized matrix formulation [11]. SENSE has been 
applied to arbitrary k-space trajectories [13] and has been 
extended to 2-d SENSE [14] and multi-slice parallel 
acquisitions [15]. General analysis frameworks for comparing 
image and k-space domain implementations, as well as 
hybrids, are presented in [16-17]. References on array signal 
processing [18-20] formulate the problem as an optimization 
with nulling constraints. 
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si(r) complex coil sensitivities (B1-maps) for coil i=1,…,nc 
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A key area of current research has been on auto-calibration methods for estimating the in-vivo coil sensitivities 
[21-26]. Optimizations include the numerical conditioning or regularization of the matrix inverse [27-30], and the 
design of coil arrays for parallel MR imaging [31-34]. Research and development has led to an improved 
understanding of performance limitations such as tradeoffs between acceleration, # coils, and SNR degradation. 
Advances in technology have led to practical implementation and numerous applications have been proposed and 
demonstrated. 
 

The presentation will begin with the general matrix formulation of combined sensitivity and Fourier (gradient) 
encoding (the forward problem) and the inverse solution for arbitrary k-space. This general formulation will then be 
simplified to the case of Cartesian k-space acquisition. Equivalence between image and k-space domain 
implementations will be discussed and the concept of coil sensitivity spectra [16] will be presented to motivate how 
missing gradient encodes (views) are replaced by parallel MR. The methods of SMASH and harmonic fitting are 
then presented. SNR losses are inherent in inverse problems due to ill-conditioning. The variance inflation factor, or 
so called SENSE g-factor [12], is explained. The method of 2-d SENSE [14] has been proposed for improved g-
factor for volume imaging with high acceleration factors. The 2-d SENSE method is briefly described. Thoughout 
the presentation, it is assumed that the coils sensitivities, si are known or can be estimated. The subject of in vivo 
estimation of coil sensitivities and auto-calibration are presented at the conclusion. 
 
2.  Matrix Formulation 

The matrix formulation (Eq. [1]) and solution (following Pruessmann, et al. [12]) incorporates both Fourier 
(gradient) and coil sensitivity encoding for arbitrary k-space acquisition. In this formulation the matrix-vector 
notation assumes that 2d variables are ordered in a 1-d vector. In other words, the column vector r consists of nr=N2 
elements over (x,y), and likewise, k, assumes nk values over (kx,ky). The column vector G consists of measured k-

space data for nc coils, i.e., nc nk x1. Eq. 1 
represents the encoding or forward problem. 

 
Thoughout the presentation, it is assumed that 

the coils sensitivities, si are known or can be 
estimated with sufficient accuracy. The subject of 
in vivo estimation of coil sensitivities is very 
important and will be addressed briefly at the 
conclusion. The encoding functions for combined 
Fourier (gradient) and coil sensitivity encoding are 
shown in Fig. 3 for illustration purposes. In this 
simulated illustration, there are 4 coils 
surrounding a cylindrical phantom and Fourier 
encoding is shown for (kx,ky)= (0,0), (2,0), (0,2), 
and (2,2). The real encoding functions (images) 
are shown. 
 

The image reconstruction or solution to the 
inverse problem (Eq. [2]) may be estimated by the 
least squares method provided the total number of 
encodes nc nk > nr =N2. Parallel imaging may be 

used to achieve acceleration by using fewer gradient encoding steps (nk) and still maintain the same spatial 
resolution. The noise covariance (Ψ) weighted least squares solution optimizes the SNR subject to the constraint of 
nulling artifacts due to undersampling. The solution for this arbitrary k-space formulation requires an N2xN2 matrix 
inversion which is impractical to implement with direct inversion for typical image sizes (e.g., 256x256). The least 
square solution [13] based on the iterative conjugate gradient method may be used to compute solutions converging 
within reasonable reconstruction times. An example short axis cardiac image reconstructed using the iterative 
conjugate gradient method is shown in Fig. 4 for the 1st 6 iterations. In this example, a variable density Cartesian k-
space acquisition was used with an acquisition matrix of 128x60 and 35 phase encodes acquired, every other line 
with 5 added center lines. The acquisition used a real-time true-FISP sequence without ECG triggering, and 
corresponded to a frame rate of approximately 15 fps. 
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Figure 3. Example encoding functions 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Example short axis cardiac images using 
variable density Cartesian k-space acquisition, 
reconstructed using iterative conjugate gradient SENSE. 

 
The simplified matrix formulation for uniform Cartesian k-space acquisition is presented next. Figure 5 

illustrates the aliasing due to uniformly undersampled Cartesian acquisition for rate R=2 showing images from a 
single coil. Given knowledge of the coil sensitivities, the aliased images can be separated by solving linear 
equations. The matrix formulation and solution are given in Equation 3. S is referred to as the coil sensitivity matrix, 
and U is the unmixing matrix. Application of the SENSE unmixing matrix may be equivalently described as phased 
array combining as illustrated in Figure 6. Example short axis cardiac images acquired at acceleration rates 2, 3, and 
4 are shown in Figure 7 before and after SENSE reconstruction. These are real-time free breathing true-FISP 
without ECG triggering acquired at 15, 22.5, and 30 fps for rates 2, 3, and 4 respectively, using a 128x60 acquisition 
matrix.  
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Figure 5. Illustration of aliasing due to undersampled Cartesian k-space acquisition. 
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Figure 7. Example short axis cardiac SENSE images.
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Figure 6. Simplified diagram 
of SENSE phased array combining. 

    Image domain phased array combining may 
equivalently be performed in the k-space domain 
as shown in Fig. 8, where image domain 
multiplication by ui(x,y) has been implemented by 
k-space domain convolution with Ui(kx,ky). This 
leads directly to k-space methods such as SMASH 
which fill the missing k-space using convolution 
with a truncated kernel composed of a set of 1 or 
more harmonic fits to the coil sensitivities. Further 
insight is gained [16] by examining the spatial 
spectra of the coil sensitivities illustrated in Fig 9. 
The non-uniform coil sensitivity profile leads to a 
blurring in k-space, which allows parallel imaging 
to solve for the missing phase encodes. 
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Figure 8.  Equivalence between image and k-space domain implementations of parallel imaging. 
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Figure 10.  SMASH procedure for filling missing k-space lines.
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In the formulation of the k-space parallel imaging method for Cartesian k-space acquisition, the acquired k-
space data may be written as: 

( , )

,
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G k k s x y e f x y n k k
−
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and the SMASH estimate of the “composite” k-space data with missing views filled in may be written as: 
( )ˆ( , ) ( , )m

x y y i i x y
i

G k k m k n G k k− ∆ = ∑  [5] 

where the coefficients ( )m
in are calculated by a fit to the m-th harmonic. 
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i
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This procedure is diagrammed in the illustration 
of Fig. 10. The harmonic fits for m=0 and m=1 
are shown in Fig. 11 for simulated complex coil 
profiles. There is considerable error between 
the actual and desired harmonic fits. The error 
may be greatly reduced by using a “tailored” 
harmonic fit [9] which fits to a weighted set of 
harmonics, as illustrated in Fig. 12 which uses a 
phased sum of the complex coils as a weighting 
function, as described by Eq. 7. 

( )
0

0
1

( , ) ( , )

( , ) ( , )  phased sum

y

i

jm k ym
i i

i

Nc
j

i
i

n s x y s x y e

s x y s x y e φ

∆

=

≈

=

∑

∑
                [7] 

uniform sensitivity 

 

sensitivity with 
vertical shading 

no blurring k-space blurred 
by coil sensitivity spectra 

fills in missing views 
(R=4 example) 

coil sensitivity profiles 

coil sensitivity spectra 

0 0.5 1 0

0.5

1

-4 -2 0 2 4 0

0.5

1

Figure 9. Coil sensitivity “spectra” illustrating k-space view filling concept. 



Figure 12. Tailored harmonic fit to complex coil sensitivities profiles.
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Figure 13.  SMASH procedure using block of k-space lines.

    A further generalization of the SMASH 
method is to use blocks of k-space lines for 
calculating the missing phase encodes, as shown 
in Fig. 13. This improves the ability to model 
coil sensitivity profiles which have sharper 
edges, and correspondingly greater spatial 
bandwidth. For example, this approach is used 
in the GRAPPA method [23]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. SNR losses 
Accelerated imaging using the SENSE method incurs a loss in SNR due to both reduced imaging time and sub-

optimal coil geometry (the so called g-factor). The SNR for accelerated parallel imaging using the SENSE method 
may be calculated as: 

=SENSE optimumSNR SNR g R  , [8] 

where R is the acceleration factor and SNRoptimum is the SNR for B1-weighted optimum phased array combining [18] 
and the loss in SNR due to variance inflation, SENSE g-factor [12], is defined as: 

( ) ( )
H -1 -1 H -1

1( , )
( ) ( )

=
Ψ Ψk,k k,k

kg x y
S S S S

  , [9] 

where the subscript (k,k) denotes the index of the matrix corresponding to the k-th sub-image. The spatially varying 
g-factor represents the loss in SNR (inflation in variance) due to ill-conditioning of the matrix inverse, which 
depends on the acceleration rate, the number of coils, specific coil sensitivity profiles (sizes, shapes, and positions), 
slice orientation, and phase encode direction.  
 The g-factor depends strongly on position (x,y,z) and has several hotspots. Figures 14 and 15 show maps of the 
g-factor for 4 and 8 coils, respectively, at various acceleration rates.  
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Fig. 14. Example g-factor maps for SENSE with 4-coils. Fig. 15. Example g-factor maps for SENSE with 8-coils.



 The ill-conditioning of the inverse also increases the effect of errors in estimates of the complex coil 
sensitivities (B1-maps). Errors in the sensitivity matrix will degrade the alias artifact suppression. It is customary to 
regularize or condition the matrix inverse [27-30]. Adaptive regularization may be used to spatially vary the degree 
of conditioning and dramatically improve the SENSE reconstruction. 
 
4. 2-d SENSE 
 In volume imaging applications using 2 phase encode dimensions (or spectroscopic imaging), it may be 
preferable to perform accelerated imaging in each of the 2 phase encode directions rather than a higher rate along a 
single direction. This has been referred to as 2-d SENSE [14]. The matrix formulation for the case of R=2 
acceleration along y and z, for an overall R=4 acceleration, is written as: 
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where Dy=FOVy/2 and Dz=FOVz/2. Depending on the specific coil sensitivity profiles and slice geometry, it may be 
possible to achieve a g-factor which is greatly reduced when compared with R=4 acceleration along a single 
dimension, e.g., y or z in this case. A scheme for performing SENSE with multi-slice parallel acquisition is 
presented in [15]. 
 
5. B1-Map Estimates and Auto-calibration 

Thoughout the presentation, it is assumed that the coils sensitivities, si are known or can be estimated with 
sufficient accuracy. The complex coil sensitivities, also known as B1-maps, depend not only on the coil geometry 
and orientation, but are stongly influenced by the sample volume of interest which alters the magnetic field 
distribution. For this reason, in-vivo estimation of coil sensitivities is key to achieving accurate estimates. In the case 
of k-space methods such as auto-SMASH and GRAPPA [21-23], B1-maps are not explicitly calculated. Rather, k-
space weighting coefficients are based on in vivo k-space reference data directly, as described briefly at the 
conclusion of this section. 

In vivo B1-maps may be estimated from separate or interleaved reference scans, or from the undersampled 
imaging data itself in a variety of schemes referred to as auto-calibrating. A basic description follows. The complete 
process may often involve several additional steps to include spatial smoothing and sometimes extrapolation, the 
details of which are not fully described. First, the raw sensitivities are estimated from the individual coil images 
acquired without undersampling artifacts, at either full or reduced spatial resolution. Normalization with either a 
body coil image or root-sum-of-squares (RSS) combined magnitude image is used to remove the image modulus, as 
described by Eq. [11] or [12], respectively, where the subscript i designates the coil index. In the case of 
normalization with a body coil image, both the modulus and phase of the object are removed, assuming that the 
body coil sensitivity is uniform. In the case of normalization by RSS magnitude image only the image modulus is 
removed leaving the object phase, f/|f|. Furthermore, the raw sensitivies will be weighted by the combined 
magnitude image leading to a weighting on the final parallel MR reconstructed image. The object phase may be 
removed using an array processing scheme based on the sample correlation matrix and dominant eigenvector [19]. 
The object phase may have rapid spatial variation, and removal of this phase enables spatial smoothing of the raw 
sensitivities. Example images and raw sensitivity estimates are shown in Fig. 16 for a cardiac imaging application. 
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Since the coil sensitivities generally have slower spatial variation than the object being imaged, several 

implementations acquire the B1-map data at lower spatial resolution or employ spatial smoothing to reduce noise or 
fluctuations. If separate unaccelerated scans are used to acquire reference images, reduced resolution is often used to 
acquire the images in a reasonable time period. 



Figure. 16. Individual coil images (top row) and raw sensitivities 
(bottom row) per Eq.[12]. 
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k-space acquisition. 
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Fig. 18. Example of time interleaved k-space acquisition used for auto-calibrating TSENSE method. 
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Fig. 19. Simplified diagram for auto-calibrating TSENSE method. 
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Auto-calibration in which reference data 
are acquired coincident with the imaging 
have the benefit of adapting to changes in 
position of coil or body that might otherwise 
occur between calibration and imaging. 
Several auto-calibrating methods are based 
on acquiring additional k-space center lines 
each time frame [21-24] or by using non-
Cartesian sampling such as radial k-space 
acquisition which naturally oversamples the 
center of k-space. The central k-space data is 
then used to reconstruct low resolution 
images for each coil which are used to 

estimate sensitivity maps at each imaging time frame. For example, Fig. 17 illustrates the lines of k-space acquired 
for Cartesian sampling with variable density. The acquisition of center lines reduces the net acceleration rate, 
although they may be used with a generalized reconstruction (see Fig. 4) to slightly improve the image quality. The 
lower resolution of the reference will limit the accuracy of the sensitivity maps which may lead to residual artifacts. 
Reconstruction of lower resolution reference images may require additional windowing to reduce artifacts arising 
from Gibb’s ringing in the sensitivity maps [24]. 

 
In dynamic imaging applications, it is possible to aquire a full spatial 

resolution reference image suitable for auto-calibration by using a time 
interleaved k-space acquisition as illustrated in Fig. 18 (rate, R=2 
example). Multiple undersampled frames may be averaged or low pass 
temporally filtered to reconstruct a low temporal resolution reference 
image used to calculate coil sensitivities. This method known as TSENSE 
[25] is diagrammed in Fig. 19. Integration or temporal filtering may be 
implemented equivalently in either k-space or image domains with 
appropriate zero-filling of missing data.  

 



K-space methods such as auto-SMASH, variable density auto-SMASH, and GRAPPA [21-23] are auto-
calibrating methods which utilize additionally acquired central k-space lines, also known as auto-calibration signal 
(ACS) lines, to calculate the coefficients ni

(m) used for SMASH reconstruction. These coefficients are calculated 
directly from the k-space data without explicitly calculating sensitivity maps. In the original auto-SMASH 
formulation the coefficients were calculated by least squares fit as: 

( )( ) ( )ACS m
i y y i i y

i i
S k m k n S k− ∆ =∑ ∑  [13] 

where Si(ky) is the k-space data for phase encode line ky and i represents the coil index. In variable density auto-
SMASH the fit may be performed for multiple pairs of ACS lines, 

( )
,( ( ) ) ( )ACS m

i y y i l i y y
i i

S k m l k n S k l k− + ∆ = − ∆∑ ∑  [14] 

and the multiple fits ni,l
(m) cans be combined with a weighted average based on the signal energy, where l represents 

the number of available fits. The GRAPPA method [23] performs parallel MR reconstructions for each coil and uses 
root-sum-of-squares combining to produce a magnitude image. It further generalizes the reconstruction by using a 
block (or sliding block) fit for each coil j, 

( )
, , ,( ( ) ) ( ( ) )ACS m

j y y i j l b i y y
i b

S k m l k n S k bR l k− + ∆ = − + ∆∑∑  [15] 

where R denotes the acceleration rate, b is the index of the undersampled line within each block, and l represents the 
number of available fits. GRAPPA, as well as VD auto-SMASH, use a variable density sampling to acquire the ACS 
lines each time frame. For dynamic imaging application, GRAPPA may be implemented with a time interleaved 
undersampled acquisition and derive the ACS lines by temporal averaging. This approach is referred to as 
TGRAPPA [26] and has the benefits of improved speed and image quality due to increased block size and 
coefficient averaging. 
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