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Abstract— Breathing movements during the image acquisi-
tion of first-pass gadolinium enhanced, myocardial perfusion
Magnetic Resonance Imaging (MRI) hinder a direct automatic
analysis of the blood flow of the myocardium. In addition, a
qualitative readout by visual tracking is more difficult as well.
Non-rigid registration can be used to compensate for these
movements in the image series. Because of the local contrast and
intensity change over time, the registration criterion needs to be
chosen carefully. We propose a measure based on Normalized
Gradient Fields (NGF) in order to obtain registration. Since
this measure requires strong gradients in the images, we also
test combining the measure with the Sum of Squared Differences
(SSD) to maintain registration forces over the whole image area.
To ensure smoothness, we employ a Laplacian regularizer and
use the B-spline based approach to describe the transformation
of the image space. Our experiments show that by using NGF
good registration results can be obtained for image exhibiting
a high intensity contrast. For images with a low intensity
contrast, combining NGF and SSD improves the registration
results significantly over using NGF only. Both measures are
differentiable making possible the application of fast, gradient
based optimizers.

I. INTRODUCTION

First-pass gadolinium enhanced, myocardial perfusion
magnetic resonance imaging (MRI) can be used to observe
and quantify blood flow to the different regions of the my-
ocardium. Ultimately such observation can lead to diagnosis
of coronary artery disease that causes narrowing of these
arteries leading to reduced blood flow to the heart muscle.

A typical imaging sequence includes a pre-contrast base-
line image, the full cycle of contrast agent first entering
the right heart ventricle (RV), then the left ventricle (LV),
and finally, the agent perfusing into the LV myocardium
(Fig. 1). Images are acquired to cover the full first pass
(typically 60 heartbeats) which is too long for the patient to
hold their breath. Therefore, a non-rigid respiratory motion
is introduced into the image sequence which results in a
mis-alignment of the sequence of images through the whole
acquisition. For the automatic analysis of the sequence, a
proper alignment of the heart structures over the whole
sequence is desired.
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(a) pre-contrast baseline (b) peak RV enhancement

(c) peak LV enhancement (d) peak myocardial enhancement

Fig. 1. Images from a first-pass gadolinium enhanced, myocardial perfusion
MRI of a patient with chronic myocardial infarction (MI).

A. State of the art

To achieve such alignment, various registration methods
have been proposed [1]. The challenge in the registration
of the contrast enhanced perfusion imaging is that the
contrast and intensity of the images change locally over
time, especially in the region of interest, the left ventricular
myocardium.

Some approaches to compensate the breathing movement
use rigid registration only: Breeuwer and Spreeuwers [2]
use a translation/rotation based registration with normalized
cross-correlation as a similarity measure. Milles et al. [3]
proposed to identify three images (base-line, peak RV en-
hancement, peak LV enhancement) by using independent
component analysis (ICA) of the intensity curve within the
left and the right ventricle. These three images then form
a vector base that is used to create a reference image for
each time step by a weighted linear combination, hopefully
exhibiting a similar intensity distribution like the according
original image to be registered. Image registration of the
original image to the composed reference image is then done
by a rigid transformation minimizing the sum of squared
differences (SSD). However, it is not clear, how the dis-
placements between the three base images are corrected (if at
all), and how their mis-alignment might influence the overall
registration. Also with rigid registration only, the method
does not account for the non-rigid deformations of the heart.

Other authors target for non-rigid registration and use
mutual information (MI) based criterions as image similarity
measures [4], [5]. However, the evaluation of MI is quite



expensive in computational terms.

B. Our contribution

In order to compensate for the breathing movements, we
use non-rigid registration, and to avoid the difficulties in
registration induced by the local contrast change, we follow
Haber and Modersitzki [6] using a modified version of
their proposed image similarity measure that is based on
Normalized Gradient Fields (NGF). Since this cost function
does not induce any forces in homogeneous regions of the
images, we also combine the NGF based measure with SSD.

The remainder of the paper first discusses non-rigid regis-
tration, then, we focus on the NGF based cost measure and
our modifications to it as well as combining the new measure
with the well known SSD measure FSSD. Finally, we present
and discuss these results and point to future work.

II. THE METHODS
A. Non-Rigid Registration

Image registration can be defined as follows: consider an
image domain Ω ⊂ Rd in the d-dimensional Euclidean space,
a test image S and a reference image R, and a transformation
of an image as a mapping T : Ω→ Ω. Then, the registration
of S to R aims at finding a transformation T according to

T = min
T∈Θ

(F (ST , R) + κE(T )) . (1)

F measures the similarity between the (deformed) test image
S and the reference, E ensures a steady and smooth transfor-
mation T , and κ is a weighting factor between smoothness
and similarity. In non-rigid registration, the transformation
T is only restricted to be neighborhood-preserving. In our
application, the similarity measure F is derived from a so
called voxel-similarity measure that takes into account the
intensities of the whole image domain. In consequence, the
driving force of the registration will be calculated directly
from the given image data.

B. A similarity measure based on normalized gradient fields

The use of normalized gradient fields (NGF) has been
proposed by Haber and Modersitzki for the registration of
images with different intensity distributions as an alternative
to mutual information [6]. Given an image I(x) x ∈ Ω and
its noise level η, a measure ε for boundary “jumps” (locations
with a high gradient) can be defined as

ε := η

∫
Ω
|∇I(x)|dx∫

Ω
dx

, (2)

and with

‖∇I(x)‖ε :=

√√√√ d∑
i=1

(∇I(x))2
i + ε2, (3)

the NGF of an image I is defined as follows:

nε(I,x) :=
∇I(x)
‖∇I(x)‖ε

. (4)

NGF based similarity measures for the image registration
of a test image S to a reference image R have been

formulated based on either the scalar product or the cross
product of the vectors of the NGF [6]:

F
(·)
NGF(S,R) :=− 1

2

∫
Ω

‖nε(R,x) · nε(S,x)‖2dx (5)

F
(×)
NGF(S,R) :=

1
2

∫
Ω

‖nε(R,x)× nε(S,x)‖2dx (6)

However, both similarity measures exhibit problems when it
comes to their application. Even though the gradient of the
scalar product based cost function F

(·)
NGF(5) is analytically

zero at the optimum, for practical implementations of the
gradient evaluation, like e.g., finite differences, the gradient
is non-zero at the optimum (i.e. even if S = R) making the
optimization using gradient based methods difficult. On the
other hand, when using the cross product based version (6),
F

(×)
NGF(x) is not only zero when nε(R,x)(x) ‖ nε(S,x)(x)

(as desired), but also when either nε(R,x), or nε(S,x) have
zero norm.

Therefore, we propose a different similarity measure as

d(a,b) :=
{

a− b, if a · b > 0,
a + b, otherwise (7)

FNGF(S,R) :=
1
2

∫
Ω

‖nε(R) · d(nε(R),nε(S))‖2dx. (8)

This cost function needs to be minimized, is differen-
tiable and its evaluation as well as the evaluation of its
derivatives is straightforward, making it easy to use it for
non-rigid registration. In the optimal case, S = R the
cost function and its first order derivatives are zero and the
evaluation is numerically stable. FNGF(x) is minimized when
nε(R,x)(x) ‖ nε(S,x)(x) (as desired) and even zero when
nε(R,x)(x) and nε(S,x)(x) have the same norm, but also
when nε(R,x) has zero norm, thereby, reducing the number
of undesired cases in comparison with (6).

C. The complete non-rigid registration method

The proposed similarity measure FNGF is a local measure
and is, therefore, well suited for the registration of images
that exhibit local intensity change. However, the cost function
is also zero (or close to zero) in homogeneous areas of the
reference image. Therefore, good registration can only be
achieved if either the images do not contain large homoge-
neous areas, or if a very “smooth” regularization E(T ) (eqn.
1) is used, and/or the transformation T is rather restricted.

To overcome these problems, our registration method uses
a Laplacian regularization [7],

EL :=
∫

Ω

∥∥∥∥∂2T (x)
∂x2

∥∥∥∥2

dx +
∫

Ω

∥∥∥∥∂2T (x)
∂y2

∥∥∥∥2

dx (9)

and the transformation is formulated in terms of B-splines
[8], introducing a smoothness that can be adjusted by the
number of control points.

In addition, we also compare a minimization of FNGF (8)
only with the minimization of a combination of the both
functions FNGF and FSSD (10) to achieve registration.

FSSD(S,R) :=
∫

Ω

(S(x)−R(x))2dx. (10)



As minimizer we use a Levenberg-Marquardt optimizer [9].
The image series to be registered consists of approximated

60 2D images. In order to reduce the influence of the
changing intensities, a registration of all frames to one
reference frame has been rules out and replaced by a serial
registration. To reduce the accumulation of registration errors
and in order to be able to choose a reference frame easily, the
following procedure is applied: For each pair of subsequent
images registration is done twice, one selecting the earlier
image of the series as a reference (backward registration),
and the second by using the later image as the reference
(forward registration). Therefore, for each pair of subsequent
images Ii and Ii+1, a forward transformation T i,i+1 and
a backward transformation T i+1,i is obtained. Consider the
concatenation of two transformations

Ta(Tb(x)) := (Tb ⊕ Ta)(x); (11)

in order to align all image of the series a reference frame iref
is chosen, and all other images Si are deformed to obtain the
aligned image S(align)

i by applying the subsequent forward or
backward transformations

S
(align)
i :=


Si

(⊕i+1
k=iref

T k,k−1(x)
)
∀i < iref,

Si

(⊕i−1
k=iref

T k,k+1(x)
)
∀i > iref,

Siref otherwise.

(12)

In order to minimize the accumulation of errors for a series
of n images one would usually choose iref = bn2 c as the
reference frame. Nevertheless, with the full set of forward
and backward transformations at hand, any frame can be
chosen.

III. EXPERIMENTS AND RESULTS

A. Experiments

First pass contrast enhanced myocardial perfusion imaging
data was acquired during free-breathing using 2 distinct pulse
sequences: a hybrid GRE-EPI sequence and a trueFISP se-
quence. Both sequences were ECG triggered and used 90 de-
gree saturation recovery imaging of several slices per R-R in-
terval acquired for 60 heartbeats. The pulse sequence param-
eters for the true-FISP sequence were 50 degree readout flip
angle, 975 Hz/pixel bandwidth, TE/TR/TI= 1.3/2.8/90 ms,
128x88 matrix, 6mm slice thickness; the GRE-EPI sequence
parameters were: 25 degree readout flip angle, echo train
length = 4, 1500 Hz/pixel bandwidth, TE/TR/TI=1.1/6.5/70
ms, 128x96 matrix, 8 mm slice thickness. The spatial reso-
lution was approximately 2.8mm x 3.5mm. Parallel imaging
using the TSENSE method with acceleration factor = 2 was
used to improve temporal resolution and spatial coverage.
A single dose of contrast agent (Gd-DTPA, 0.1 mmol/kg)
was administered at 5 ml/s, followed by saline flush. Motion
compensation was performed for seven distinct slices of
two patient data sets covering different levels of the LV-
myocardium.

The Registration procedure used B-Splines of degree
2 and varying parameters for the number l ∈ {1, 2, 3}
of multi-resolution levels, the knot spacing crate ∈

{32mm, 16mm, 12.8mm} for the B-Spline coefficients, and
the weight κ ∈ {0.8, 1.0, 2.0, 3.0} of the Laplacian regu-
larization term. Estimating the noise level of images is a
difficult problem, we approximated η by σ(∇I) standard
deviation of the intensity gradient.

To ensure registration driving forces exist over the whole
image domain, we also run experiments with the combined
cost function FNGF + 1

10FSSD so that FNGF would take
precedence where both images exhibit strong gradients, and
FSSD otherwise. Since all images are of the same modality,
we expect that combining the two measures will yield the
same or better results. Tests showed that applying FSSD as
only registration criterion doesn’t yield usable results.

B. Registration results

The quality of the registration was assessed visually ob-
serving videos as well as horizontal and vertical profiles
through the time-series stack. An example of the profiles
location is given in Fig. 2.

Fig. 2. Location of the vertical and horizontal profiles through the time
series stack, and the septal (a) and inferior (b) ROIs for intensity tracking.

(a) Original image series

(b) Registration using NGF only, κ = 1.0, note the bad
alignment and the drift in the second (lower) half of the series

(c) Registration using NGF + 0.1 SSD, κ = 2.0, the drift
vanished and alignment is in general better then with NGF only

Fig. 3. Registration result by using l = 3 multi-resolution levels, and a
knot spacing crate = 16mm. Left: vertical cut, right: horizontal cut.



We obtained the best results using l = 3 multi-resolution
levels and a knot-spacing of crate = 16mm in each spacial di-
rection. For the registration using NGF, a regularizer weight
κ = 1.0 yielded best results, whereas for the combination of
NGF and SSD κ = 2.0 was best. The registration by using
FNGF yields good results for the first half of the sequence,
where the intensity contrast is higher, and the gradients
are, therefore, stronger. In the second half, the sequential
registration resulted in a bad alignment and a certain drift of
the left ventricle (Fig. 3 (b)). Combining FNGF and FSSD
results in a significant improvement of the alignment for
the second part of the sequence (Fig. 3 (c)) and provided
similar results for the first half. Following this scheme, a
good reduction of the breathing motion was achieved in six
of the seven slices. In the seventh slice, which was located
near the apex, the motion reduction was not as good, mainly
due to strong out-of-plane motion.

The good registration results were confirmed by observing
the (average) signal intensities time courses in different
regions of the myocardium. Fig. 4 show the corresponding
intensity curves of the ROIs (a) and (b) represented in Fig. 2.
A clear improvement is observed that would definitely affect
quantitative analysis.
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(a) Septal wall: good reduction of the strong intensity changes
in the ROI, the residual fluctuation at the end of the series can
actually be found in the original image series.
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(b) Inferior wall: an infarcted area, the strong intensity changes
due to the breathing movement are removed.

Fig. 4. Comparison of intensity change before and after registration in
two regions of interest (a) and (b) as specified in Fig. 2 of a patient with
chronic MI in the mid-posterior region (inferior to inferolateral).

IV. CONCLUSIONS AND FUTURE WORK
We have introduced a new measure FNGF (8) that is

based on a proposal by Haber and Modersitzki [6] and uses

normalized gradient fields as a similarity measure for series
of images obtained by non-rigid registration of myocardial
perfusion MRI. Our experiments show that using this mea-
sure alone yields a good registration only for images of the
series that exhibit a high contrast and, hence, strong gradients
in the ROI, but results in a smooth shift of the registered
series and a bad alignment, when the intensity contrast is
low.

We were able to improve the latter results by combining
FNGF (8) and FSSD (10) in a way that the NGF based cost
function takes precedence in regions with strong gradients,
while SSD ensures a steady registration in areas with low
contrast.

In the future work, we will focus on validating the
automatically registered areas of interest by comparing with
manually tracked contours. Based on this we will apply a
further tuning to the registration parameters. Specifically, the
weighting between FNGF, FSSD, and the weighting of the
regularizer need a further review. With a proper validation
protocol in place, we would like to compare our method with
approaches utilizing MI based criteria in terms of registration
accuracy and speed as well.
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[4] H. Ólafsdóttir, “Nonrigid registration of myocardial perfusion
MRI,” in Proc. Svenska Symposium i Bildanalys, SSBA
2005, Malmø, Sweden. SSBA, mar 2005. [Online]. Available:
http://www2.imm.dtu.dk/pubdb/p.php?3599

[5] K. Wong, E. Wu, M. Ng, Y. Wu, H. Tse, C. Lau, G. Lo, and
E. Yang, “Image registration in myocardial perfusion mri,” Engineering
in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual
International Conference of the, pp. 453–454, 2005.

[6] E. Haber and J. Modersitzki, “Beyond mutual information: A simple
and robust alternative,” in Bildverarbeitung für die Medizin 2005, ser.
Informatik Aktuell, A. H. Hans-Peter Meinzer, Heinz Handels and
T. Tolxdorff, Eds. Springer Berlin Heidelberg, March 2005, pp. 350–
354.
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