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INTRODUCTION 
Estimation of the B0 field inhomogeneity map is an important problem in MRI, as it allows, e.g., robust water/fat separation, improved shimming, 
and correction of EPI and spiral acquisitions. A common approach for measuring the field map is based on the phase evolution of several images 
acquired at different TEs. The estimated field map is typically regularized by imposing spatial smoothness [1,2]. However, this approach is not robust 
in the presence of severe field inhomogeneity (e.g., in abdominal or cardiac imaging, which have significant susceptibility changes), due to the 
nonconvexity of the corresponding optimization problem [3,4]. Here we introduce a more robust method for regularized field map estimation in the 
presence of multiple spectral components. 
METHODS 
Consider an acquisition consisting of N images I(x,y)(tn)  obtained at different TEs, tn, n=1,…,N. For simplicity, let us focus on the case with two 
spectral components (water and fat). At a given voxel, the signal can be well modeled as s(tn; ρW, ρF, fB) = [ρW + ρF exp(i2πtnfF)]exp(i2πtnfB  ), where 
ρW and ρF are the water and fat amplitudes, respectively, fF is the (known) fat chemical shift, and fB is the frequency shift due to field inhomogeneity. 
Assuming Gaussian noise, maximum-likelihood (ML) estimation of (ρW, ρF, fB)  reduces to minimizing R(x,y)(ρW, ρF, fB) = ||I(x,y) – s(ρW, ρF, fB)||2, 
where I(x,y) = [I(x,y)(t1)  … I(x,y)(tN)]T is the vector of measured data at voxel (x,y), and  s(ρW, ρF, fB)=[s(t1;ρW, ρF, fB) … s(tN;ρW, ρF, fB)]T. The variable 
projection (VARPRO) method allows us to remove the linear variables, resulting in a new cost function R(x,y)(fB) = ||I(x,y) – Φ( fB)Φ†( fB) I(x,y)||

2, 
where Φ( fB) is the Nx2 matrix with rows [exp(i2πtnfB)    exp(i2πtn(fB + fF))], for n=1,…,N, and †  denotes pseudoinverse. Minimizing R(x,y)(fB) is a  
one-dimensional problem at each voxel [4].  

The key aspect of field map estimation is spatial regularization. For this purpose, the effectiveness of imposing a Markov Random Field (MRF) 
smoothing prior has been studied in [4]. However, field map estimation subject to an MRF prior is a high-dimensional problem with multiple local 
optima, and fast algorithms such as iterated conditional modes (ICM) guarantee only local convergence, whereas stochastic algorithms which 
guarantee asymptotic global convergence are extremely slow. The proposed method is designed to overcome these limitations by noting that ICM 
will converge to the global optimum as long as the initial guess is close enough to the global optimum. Furthermore, a good approximation to most 
field maps can be made as a combination of smooth basis functions             (e.g., low-frequency sinusoids). The VARPRO formulation allows us to 
express the approximated field map as                                                 and estimate the coefficients cj directly from the data (instead of voxel-by-voxel 
estimation with subsequent low-pass filtering) by minimizing the sum of the residuals at every location                                         (e.g., by a coordinate 
descent method).  This is equivalent to constrained ML estimation, and can be done efficiently by pre-computing R(x,y)(fB) at each voxel, on a grid of 
fB values [4]. Subsequently, fB,smooth(x,y) is used as initial guess for ICM, which will provide the final field map estimate. This final estimate may 
contain more rapid field variation than that allowed by the smooth approximation, thus accommodating susceptibility effects or regions of high field 
inhomogeneity within the magnet.  
RESULTS 
Cardiac data were acquired using a multi-echo GRE sequence on a 
Siemens ESPREE 1.5T scanner using four channels, with TEs 1.58, 3.91, 
6.24, and 8.57 ms. Figure 1 shows results from field map estimation and 
the corresponding water/fat separation, and illustrates the advantages of 
jointly estimating the field map and imposing smoothness, instead of 
imposing smoothness a posteriori.  

 The robustness of the estimation process is due to the ability of the 
initial step (estimating fB,smooth) to capture the main features of the field 
map variation, and therefore encourage the final estimate to fall in the 
correct “valley” of the residual R(x,y)(fB) at each location. Note that 
estimation of fB,smooth is itself a nonconvex problem, but one defined in a 
much lower-dimensional space such that many voxels are updated 
simultaneously. Thus, it has the ability to avoid local minima in which 
voxel-by-voxel updating would get trapped. Moreover, despite the 
extreme smoothness of fB,smooth, the final ICM estimate is still able to 
recover sharper field variations if they are present in the data. 
 
CONCLUSION 
This work presents a two-step procedure for B0 field map estimation in 
the presence of multiple spectral components. This method produces 
better results than existing techniques by formulating the regularized 
estimation of the complete field map as a joint problem, which is solved 
using an improved optimization algorithm. 
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Figure 1. (Top left)  Voxel-by-voxel ML field map estimate; (Top right) 
Low-pass filtered ML estimate, not able to correct the errors introduced by 
voxel-by-voxel processing; (Center left) Proposed method: initial field 
map expressed as a combination of low-frequency sinusoids (fB,smooth); 
(Center right) Final field map obtained by ICM initialized with fB,smooth; 
(Bottom left) Resulting water image; (Bottom right) Resulting fat image. 
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