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Introduction: TSENSE [1] and TGRAPPA [2] have been presented as useful techniques for dynamic parallel imaging. However, 
particularly at high acceleration factors, both approaches suffer from noise enhancement due to an increased geometry factor. Here, we 
present a novel approach to overcome this limitation by taking into account that dynamic changes occur in localized regions within the 
FOV. Therefore, parallel imaging reconstructions can be applied to sparse data generated by raw data subtraction from a composite 
data set. In that way, the geometry factor is decreased since fewer pixels fold on top of each other in the sparse images. The 
reconstructed subtraction image is then added to a composite image to obtain the final image. In particular, dynamic cardiac 
applications and CE angiography benefit from this approach. 

Theory: The proposed method is based on a 
time-interleaved phase-encoding (PE) scheme 
as in TSENSE or TGRAPPA. Prior to all further 
processing, a fully Fourier-encoded composite 
data set (COMP) is required. COMP can be 
generated by summing over all time frames, for 
example. The reconstruction scheme for a single 
frame is illustrated in Fig 1. First, a subtraction 
data set (RAW,sub) is created by subtracting raw 
data of a single time-frame (RAW,frame) from 
corresponding k-space lines of the composite 
data set (RAW,comp). RAW,sub contains 
information about changes with respect to the 
composite data. For many dynamic applications, 
temporal changes occur in localized regions 
within the FOV. Compared to conventional 
parallel imaging, the number of signal-containing 
pixels folding on top of each other is reduced 
resulting in a reduced g-factor. In our approach, the aliased pixels are separated by GRAPPA using auto-calibration signal (ACS,sub) 
generated by assembling adjacent frames (ACS,frame) and subtraction from COMP (Fig1, top). ACS,sub contains information about 
the locations at which the temporal changes occur. The final reconstruction of a time frame is obtained by adding the reconstructed 
subtraction data (RECO,sub) to COMP. 

Methods and Results: Fig 2 shows in-vivo results using 32-channel data from a full Fourier-encoded cardiac segmented cine 
experiment. A six-fold accelerated interleaved PE acquisition scheme was simulated and reconstructed with conventional TGRAPPA 
and the proposed method. Root mean-squared-error (RMSE) was calculated for ROIs in each frame showing the improved 
performance of the proposed method. Fig 3 demonstrates improved image quality as compared with conventional TGRAPPA for a free-
breathing acquisition (R=4, corresponding to 25 fps) performed on a clinical 1.5 T scanner with an 8-channel cardiac array. 

Discussion: We have presented a self-calibrated parallel MRI technique for dynamic applications using sparse data. Compared with 
standard parallel MRI, the SNR is enhanced due to a reduced g-factor. In contrast to other dynamic MRI approaches, no additional 
training data is required. Although there are similarities with HYPR [3], this technique works with Cartesian trajectories and could be 
extended for non-Cartesian trajectories. Since adjacent time frames are merged for obtaining the auto-calibration signal, there might be 
some implicit temporal filtering effects which are being investigated. Also, Instead of the time-interleaved acquisition, a variable-density 
PE scheme could be used. 
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Fig 3: Free-breathing in-vivo results (R=4, 8 channels) Fig 2: In vivo results (R=6, 32 channels) 

Fig 1: Reconstruction Scheme 


