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Abstract— Field map estimation is an important problem in
MRI, with applications such as water/fat separation and cor-
rection of fast acquisitions. However, it constitutes a nonlinear
and severely ill-posed problem requiring regularization.In this
paper, we introduce an improved method for regularized field
map estimation, based on a statistically motivated formulation,
as well as a novel algorithm for the solution of the corresponding
optimization problem using a network flow approach.

The proposed method provides theoretical guarantees (local
optimality with respect to a large move), as well as an efficient
implementation. It has been applied to the water/fat separation
problem and tested on a number of challenging datasets,
showing high-quality results.

I. I NTRODUCTION

In MRI, a very homogeneous main (B0) magnetic field is
desirable. However, inhomogeneities in theB0 field are of-
ten unavoidable, due to susceptibility differences introduced
by the object being imaged, as well as magnet imperfec-
tions. These inhomogeneities introduce undesired, spatially-
varying phase shifts in the MR signal, which can be corrected
given knowledge of the trueB0 field. Hence, estimation
of the B0 field inhomogeneity map (or “field map”) is
an important problem in MRI, as it allows, e.g., effective
water/fat separation, correction of EPI/spiral acquisitions,
and automated shimming [1]–[3].

The field map can be estimated based on the phase evolu-
tion of a sequence of images acquired at different echo times,
t1,t2, . . . ,tN. In this work, we consider the presence of signal
originating from water and fat, which further complicates
the problem, as these two components have different phase
behavior [4]. The signal at an individual voxelq can therefore
be modeled as:

sq(tn) = ei2π fBtn
(

ρW + ρFe
i2π fFtn

)

(1)

where tn is the echo time shift,fB (in Hz) is the local
frequency shift due toB0 field inhomogeneity,ρW andρF are
the intensities of the water and fat components, respectively,
and fF (in Hz) is the frequency shift of fat, which is assumed
known a priori.

Field map estimation is a difficult problem due to the
nonlinearity of the signal model and the presence of phase
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wraps (particularly in cases of high field inhomogeneity). To
alleviate these problems, the estimated field map is typically
regularized by imposing spatial smoothness. Most previously
proposed methods resort to a two-step approach for estimat-
ing the regularized field map: first,fB is estimated voxel-
by-voxel using a maximum-likelihood (ML) criterion, and
second, the resulting (noisy) field map is low-pass filtered to
achieve the desired smoothness [5]. The main drawback of
this method is that, while the low-pass filtering is generally
effective in removing small noise-related perturbations in the
field map, it is unable to correct the large errors due to
the ill-posedness of the voxel-by-voxel estimation problem.
Several extensions have been proposed to improve the initial
voxel-by-voxel estimation [6]. In Ref. [7], a method is
developed for directly estimating the regularized field map,
assuming the presence of only water (i.e.,ρF = 0 in Eq. 1).
This method formulates the estimation as a penalized ML
(PML) problem, which is solved iteratively using conjugate
gradients, producing a locally optimal solution.

In this paper, we introduce a novel method for regularized
field map estimation in the presence of water and fat, based
on a PML formulation and an improved iterative optimization
algorithm consisting on mapping each step to an equivalent
network flow problem on a suitable graph.

II. M ETHODS

A. Problem formulation

The signal model in Eq. 1 contains three unknown param-
eters:{ρW,ρF, fB}. Under the assumption of white additive
Gaussian noise, the ML estimate for{ρW,ρF, fB} is obtained
by minimizing the following cost function at each voxelq:

R0(ρW,ρF, fB;sq)=
N

∑
n=1

∣

∣sq(tn)−ei2π fBtn
(

ρW+ρFe
i2π fFtn

)∣

∣

2

(2)
where N is the number of different echo times employed
(typically N = 3), sq(tn) is the measured signal at voxelq
and echo timetn, andsq = [sq(t1) · · · sq(tN)]T .

Minimizing R0(ρW,ρF, fB;sq) is a separable nonlinear least-
squares (NLLS) problem. As shown in [8], estimation of
fB can be isolated using the variable projection (VARPRO)
formulation, reducing to the minimization of:

R( fB;sq) =
∥

∥

[

I −Ψ( fB)Ψ†( fB)
]

sq
∥

∥

2
2 (3)



where

Ψ( fB) =











ei2π fBt1 ei2π( fF+ fB)t1

ei2π fBt2 ei2π( fF+ fB)t2

...
...

ei2π fBtN ei2π( fF+ fB)tN











(4)

(see [8] for details).
The residualR is a nonconvex function offB, and typically

contains multiple local minima. As shown in Ref. [8],
evaluatingR on a grid containingL uniformly spaced field
map values,Ω = { fMIN + l∆ f}L

l=1, allows us to overcome
this nonconvexity (since we can simply pick the minimizer).
However, voxel-by-voxel field map estimation is generally
still an ill-posed problem, as shown in Fig. 1, whereR
has multiple global minimizers (note thatR is actually
periodic for acquisitions with uniformly spaced echo times).
In addition, the presence of noise may yield nonsmooth field
map estimates, which is often undesirable. To address both
of these issues, we adopt a PML approach combiningR with
a spatial smoothness term, which can be viewed as imposing
a Markov Random Field (MRF) prior on the field map [9].
In this framework, estimation of the complete field map
fB = [ fB,1 , fB,2 , · · · , fB,Q] (whereQ is the number of voxels
in the image) reduces to the following discrete optimization
problem:

f̂B = arg min
{ fB,q∈Ω}Q

q=1

Q

∑
q=1

R( fB,q;sq)+ µ
Q

∑
q=1

∑
j∈δq

wq, jV( fB,q, fB, j)

(5)
whereδq is the MRF neighborhood of voxelq, µ is a regular-
ization parameter balancing data consistency and smoothness
of the solution,wq, j are spatially-dependent weights, and
V( fB,q, fB, j) is a functional which penalizes roughness in the
estimated field map. For field map estimation, we choose
a quadratic penaltyV( fB,q, fB, j) = ( fB,q − fB, j)

2, to enforce
smoothness [7], [8].

B. Optimization using network flow methods

In the VARPRO formulation, estimation of the field inho-
mogeneity map reduces to solving the optimization problem
in Eq. 5. This is generally a very large, nonconvex, discrete
problem. Typically, methods which guarantee asymptotic
convergence to the global optimum (e.g., stochastic ap-
proaches [9]) are extremely slow in practice.

We focus instead on iterative descent algorithms which
guarantee convergence to a local optimum with respect to
very large moves (where a move consists of a set of allowed
modifications to the current estimate) [10]. The final solution
is reached when no improving solution can be found using
the prescribed moves. The key to these methods is the design
of the moves: the larger the moves, the better the solution. On
the other hand, searching over a very large set may require a
large amount of computation, thus making it impractical. For
instance, in the case of the widely usediterated conditional
modes (ICM) algorithm [11], voxels are updated one at
a time, keeping the rest constant (i.e., the best amongL
candidate field maps is chosen at each step). This makes

each single step very efficient, but the quality of the final
solution is limited by the small size of the move.

A class of large-move search techniques for solving opti-
mization problems of the form shown in Eq. (5) has received
considerable attention in recent years. These methods are
based on forming a graph such that finding a minimum
cut of the graph is equivalent to minimizing the desired
functional over a move of size exponential inQ, and are
applicable to a wide-range of moves (which are called
“graph-representable”) [10], [12]. Remarkably, the equivalent
minimum cut problem can be solved efficiently (requiring an
amount of computation bounded by a low order polynomial
in Q [13]).

In this work, we consider a broad class of moves where,
given a current field map estimatefB = [ fB,1 , · · · , fB,Q], a
second estimatef′B = [ f ′

B,1 , · · · , f ′
B,Q] is in the current move

if, for every voxel q = 1, . . . ,Q, either f ′B,q = fB,q or f ′B,q =
g( fB,q,q), for some predetermined functiong. Thus, the move
is specified by the functiong. Note that the move contains 2Q

different field map estimates, many more than that of ICM
for any realistic problem size. Also, note that, as opposed
to voxel-by-voxel methods, any subset of the voxels can
be updated simultaneously using these moves (a property
which is critical for avoiding many local optima in Eq. 5).
For the moves considered in this work, the necessary and
sufficient condition for graph-representability is the simple
requirement [12]:

V( fB,q, fB, j)+V(g( fB,q,q),g( fB, j , j)) ≤

V(g( fB,q,q), fB, j)+V( fB,q,g( fB, j , j)) (6)

for all q, j, fB,q and fB, j .
A choice ofg which is applicable to the present problem

is the jump move, whereg( fB,q,q) = fB,q+β [14], [15]. Note
that the size of the jump is constant over all the voxels.

While the jump move provides a powerful tool for field
map estimation, it does not take into account the fact that, for
most voxels, the field map estimate will be close to a local
minimizer of the residualR. Here we introduce a second type
of move, termedjumpmin, which is adapted for each voxel
by moving to the next (or previous) local minimum of the
residual. Defining{ f min,m

B,q } as the local minimizers ofR at
voxel q, the functiong is:

jumpmin-next:g( fB,q,q) = min
m

f min,m
B,q s.t. f min,m

B,q > fB,q (7)

jumpmin-prev:g( fB,q,q) = max
m

f min,m
B,q s.t. f min,m

B,q < fB,q (8)

where fB,q is the current field map estimate at voxelq. The
graph-representability of both thejump and jumpminmoves
for a quadratic penaltyV can easily be proved using Eq. 6
(the proof is omitted here due to space considerations.) The
proposedjumpminmoves are shown graphically in Fig. 1.
The details on forming the equivalent graph for the moves
considered in this paper are provided in Ref. [12].

In this work, we employ a randomized scheduling of the
proposed moves, where, at each iteration, either ajumpmove
(with random step size) orjumpmin move (with random
direction) is performed. At the beginning of the iteration,
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Fig. 1. Example of residualR at an individual voxel, and corresponding
jumpminmoves.
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Fig. 2. Proposed field map estimation algorithm. In the core of the
algorithm (choosing the best among 2Q candidate field maps at each step),
the “best” field map is the one minimizing Eq. 5.

the field map is set to all zeros. The complete algorithm is
shown in Fig. 2.

III. RESULTS AND DISCUSSION

We have tested the proposed method in a cardiac water/fat
separation application, which has recently been proposed as
a method to detect fibrofatty infiltration in the myocardium
[16]. Cardiac imaging is particularly demanding in terms of
rapid field map estimation due to the presence of tissue-

air interfaces between heart and lung as well as coronary
stents and sternal wires. In this application, estimating the
water/fat images reduces to solving a linear least squares
(LLS) problem at each voxel (findingρW and ρF in Eq. 1),
once the field map is known. Errors in the field map estimate
lead to incorrect water/fat decompositions, with possible
swapping of the two components.

Data were acquired on a Siemens ESPREE 1.5 T scan-
ner using a multi-echo GRE sequence. Figure 3(a)-(c)
shows results from a cardiac acquisition with echo times
{1.6,3.9,6.2} ms. Note the large field inhomogeneity vari-
ation observed at the edges of the field of view (due to
the short, wide bore scanner). Figure 3(d)-(f) shows (for
comparison) results from the same dataset using our own
implementation of a previously proposed method, termed
IDEAL [5]. Figure 4 shows results from a sagittal acquisition
with echo times{4.2,6.7,9.2} ms. For both datasets, the
MRF neighborhood consisted of the 8 surrounding voxels,
and the MRF weightswq, j were set to the energy of the signal
at each location [7]. The algorithm was stopped after 50
iterations. In both cases, uniformly good water/fat separation
is achieved, due to the accuracy of the field map estimates.

Fig. 3. (a)-(c) Results from proposed method in a cardiac water/fat
separation application. (a) Estimated field map (in Hz). (b)Resulting water
image. (c) Resulting fat image. (d)-(f) Shown for comparison are the
results of a previously proposed method (IDEAL) [5]. Note the improved
performance of the proposed method in regions of high field inhomogeneity,
where IDEAL produces erroneous water/fat decompositions (see arrows in
(e)).

In practice, the improved performance of the proposed
method is largely due to the above describedjumpminmoves.
These moves allow rapid convergence to a good estimate
because they are tailored to each voxel (as opposed to other
types of moves, which are generic). However, the proposed



Fig. 4. Results from proposed method in a water/fat separation application
(sagittal view). (a) Estimated field map (in Hz). (b) Resulting water image.
(c) Resulting fat image.

algorithm also includes the standardjump move, which
allows a smoother field map estimate in noisy regions.

In the proposed algorithm (Fig. 2), the bulk of the com-
putation time is spent solving the network flow problem for
choosing the best candidate field map at each iteration. On an
Intel Xeon-based desktop PC with 8 GB of RAM and a 3.67
GHz CPU, solving this problem at each iteration requires
0.3 s for images of size 192× 144, and 0.9 s for images
of size 192× 256 (image sizes from the results shown in
this paper). Since a moderate number of iterations suffices to
produce good results, these computation times are acceptable
in many applications.

Perhaps surprisingly, Eq. 5 (in its discretized version) can
be solved exactly in polynomial time using network flow
methods. As shown in Ref. [17], this can be achieved by
constructing the appropriate graph and finding a minimum
cut. This result holds as long as the regularization functional
V( fB,q, fB, j) is convex, even if the residualR is a nonconvex
function of fB, as is the case for field map estimation. Direct
application of the method proposed in Ref. [17] to Eq. (5)
requires the manipulation of a very large graph (containing
on the order ofQL2 edges ifV is quadratic), making it
impractical for the problem sizes we consider. However, we
can use it to efficiently compute an initial low-resolution
field map estimate (e.g., size 64×64) obtained by globally
minimizing Eq. 5 withℓ1 penaltyV( fB,q, fB, j) = | fB,q− fB, j |
(this choice ofV requires only on the order ofQL edges in
the equivalent graph). This low-resolution estimate provides
an improved initialization (instead of all zeros) for the
proposed algorithm (see Fig. 2).

For simplicity, in this paper we have focused on the case
where two signal components (water and fat) are present.
However, the proposed method can naturally account for
more components (e.g., silicone), and can be used in the
presence of only water [7], [18]. Similarly, the proposed
method has been extended to includeT∗

2 decay [19].

IV. CONCLUSIONS

We have introduced a novel formulation for regularized
field map estimation in MRI. The proposed method should
prove useful in many challenging applications where a high
field inhomogeneity is present.

This paper also describes an improved optimization ap-
proach based on VARPRO and network flow algorithms,
which may have application for the regularized estimation
of other nonlinear parameters in different imaging scenarios.
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