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Abstract— Field map estimation is an important problem in  wraps (particularly in cases of high field inhomogeneityg. T
MRI, with applications such as water/fat separation and cof  glleviate these problems, the estimated field map is tylpical
rection of fast acquisitions. However, it constitutes a nolinear regularized by imposing spatial smoothness. Most prewous

and severely ill-posed problem requiring regularization.In this .
paper, we introduce an improved method for regularized field proposed methods resort to a two-step approach for estimat-

map estimation, based on a statistically motivated formultion,  ing the regularized field map: first; is estimated voxel-
as well as a novel algorithm for the solution of the correspoding  by-voxel using a maximum-likelihood (ML) criterion, and
y g
optimization problem using a network flow approach. second, the resulting (noisy) field map is low-pass filteced t
The proposed method provides theoretical guarantees (lota  5chieve the desired smoothness [5]. The main drawback of
optimality with respect to a large move), as well as an efficiet this method is that, while the low-pass filtering is gengrall
implementation. It has been applied to the water/fat separon = T ) p g ,9 gr
problem and tested on a number of challenging datasets, effective in removing small noise-related perturbatldﬂme
showing high-quality results. field map, it is unable to correct the large errors due to
the ill-posedness of the voxel-by-voxel estimation prahle
_ ~ Several extensions have been proposed to improve the initia
In MRI, a very homogeneous maiBd) magnetic field is yoxel-by-voxel estimation [6]. In Ref. [7], a method is
desirable. However, inhomogeneities in g field are of-  geyeloped for directly estimating the regularized field map
ten unavoidable, due to susceptibility differences intrwed assuming the presence of only water (i@.= 0 in Eq. 1).
by the object being imaged, as well as magnet imperfeqs method formulates the estimation as a penalized ML
tions. These inhomogeneities introduce undesired, sfyatia (ppL) problem, which is solved iteratively using conjugate
varying phase shifts in the MR signal, which can be Co”eCtetj#adients producing a locally optimal solution.

given knowledge of the trud, field. Hence, estimation In this paper, we introduce a novel method for regularized

of t.he B‘; f'fld wg)?omqgeaglty m"%f (”or field ma?f) tl's field map estimation in the presence of water and fat, based
an important probiem In 1, as It alows, €.9., ENectVe,, 5 py formulation and an improved iterative optimization
water/fat separation, correction of EPIl/spiral acquisif,

and automated shimming [1]-[3]. algorithm consisting on mapping each step to an equivalent

The field map can be estimated based on the phase evor|1ue_twork flow problem on a suitable graph.

tion of a sequence of images acquired at different echo times
t1,t, ..., tn. In this work, we consider the presence of signal T
originating from water and fat, which further complicates
the problem, as these two components have different phase
behavior [4]. The signal at an individual vox@tan therefore "
be modeled as:

I. INTRODUCTION

. METHODS

Problem formulation

The signal model in Eq. 1 contains three unknown param-
Sq(tn) = €27fetn (pw+ppei2"th”) (1) eters:{pw,pr, fe}. Under the assumption of white additive
Gaussian noise, the ML estimate o, p:, fs} is obtained

where t, is the echo time shiftf, (in Hz) is the local by minimizing the following cost function at each voxgl

frequency shift due t®y field inhomogeneityp,, and p. are
the intensities of the water and fat components, respégtive N
and fe (in H_z) _is the frequency shift of fat, which is assumed Ro(Pu» s, a1 Sg) = Z \Sq(tn) _ g2nfatn (pw_i_ppeiZﬂ'thn) iz
known a priori. n=1
Field map estimation is a difficult problem due to the ) ) . )
nonlinearity of the signal model and the presence of phagdere N is the number of different echo times employed
(typically N = 3), s4(ty) is the measured signal at voxel
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where each single step very efficient, but the quality of the final

g2mfsty g2 fe+fa)ty solution is limited by the small size of the move.
g2misty  @2mi(fe+ o)ty A class of large-move search techniques for solving opti-
W(fy) = _ _ (4) mization problems of the form shown in Eq. (5) has received
: : considerable attention in recent years. These methods are
g2mfetn g2 fet-fe )t based on forming a graph such that finding a minimum
(see [8] for details). cut of the graph is equivalent to minimizing the desired

functional over a move of size exponential @ and are

contains multiple local minima. As shown in Ref. [8],applicable to a wide-range of moves (which are _called

evaluatingR on a grid containind- uniformly spaced field gra_ph-representable ) [10], [12]. Remar_kgbly, the eqn_tlgnt
minimum cut problem can be solved efficiently (requiring an

map values,Q = {f, + 1A}, allows us to overcome ! :
this nonconvexity (since we can simply pick the minimizer)@mount of computation bounded by a low order polynomial

However, voxel-by-voxel field map estimation is generall)}n Q [1_3])' .

still an ill-posed problem, as shown in Fig. 1, wheRe _In this work, we consider a.broad class of moves where,
has multiple global minimizers (note tha is actually 9\ven a current field map esu/maf.g; [fo1,-, fogl, @
periodic for acquisitions with uniformly spaced echo tifes Second estimaté, = [f;, -, f, o] is n the current move

In addition, the presence of noise may yield nonsmooth fielly for every voxelg=1,....Q, either f;y = foq 0r fg q =
map estimates, which is often undesirable. To address b fo.0.q)

, for some predetermined functign Thus, the move
of these issues, we adopt a PML approach combiRimgth

is specified by the functiog. Note that the move contain§2
a spatial smoothness term, which can be viewed as imposiflf€"ent field map estimates, many more than that of ICM
a Markov Random Field (MRF) prior on the field map [g]lfor any realistic problem size. Also, note that, as opposed
In this framework, estimation of the complete field mag® VoXel-by-voxel methods, any subset of the voxels can
fo=[fo1, faz, -, fao) (WhereQ is the number of voxels be updated simultaneously using these moves (a property

in the image) reduces to the following discrete optimizatio Which is critical for avoiding many local optima in Eg. 5).
problem: For the moves considered in this work, the necessary and

sufficient condition for graph-representability is the pim
requirement [12]:

The residuaR is a nonconvex function of;, and typically

Q Q
fs =arg minQ > Rifegisg) +H Y > wojV(feg faj)
HfeaCQlqu1 =1 a=tick V(fea, fej) +V(9(Faq,),9(fe,j, 1)) <

(5) _ o
wheredy is the MRF neighborhood of voxe| p is a regular- V(9(feq, @) fo.j) +V(Teq.9(faj, ) ©)

ization parameter balancing data consistency and smagghnéor all g, j, fsq and fs ;.

of the solution,wgj are spatially-dependent weights, and A choice ofg which is applicable to the present problem

V(faq, fa,j) is @ functional which penalizes roughness in thés the jump move, wherg(fs o,q) = fs q+ B [14], [15]. Note

estimated field map. For field map estimation, we choostat the size of the jump is constant over all the voxels.

a quadratic penalt¥/ (fsgq, fs j) = (foq — fsj)?, to enforce While the jump move provides a powerful tool for field

smoothness [7], [8]. map estimation, it does not take into account the fact tobat, f

B. Optimization using network flow methods m_os_t yoxels, the fie_ld map estimat_e will be close to a local

) o o minimizer of the residuaR. Here we introduce a second type

In the VARPRO formulation, estimation of the field inho- ¢ move, termedumpmin which is adapted for each voxel

mogeneity map reduces to solving the optimization problerHy moving to the next (or previous) local minimum of the

in Eqg. 5. This is generally a very large, nonconvex, discretgssiqual. Defining{ f4™} as the local minimizers oR at
problem. Typically, methods which guarantee asymptotig,yg g, the functioné is:

convergence to the global optimum (e.g., stochastic ap-

proaches [9]) are extremely slow in practice. jumpmin-nextg(f, g, q) = minfg™ s.t. {76 > foq  (7)
We focus instead on iterative descgnt algorithms WhiChjumpmin-prev:g(fB‘q,q) — maxfyi™ st fe < fg (8)

guarantee convergence to a local optimum with respect to ’ LU ' '

very large moves (where a move consists of a set of alloweghere f; 4 is the current field map estimate at voxglThe

modifications to the current estimate) [10]. The final s@nti graph-representability of both tHemp and jumpminmoves

is reached when no improving solution can be found usinfpr a quadratic penalty can easily be proved using Eq. 6

the prescribed moves. The key to these methods is the desigime proof is omitted here due to space considerations.) The

of the moves: the larger the moves, the better the solution. @roposediumpmin moves are shown graphically in Fig. 1.

the other hand, searching over a very large set may requireTae details on forming the equivalent graph for the moves

large amount of computation, thus making it impracticak Foconsidered in this paper are provided in Ref. [12].

instance, in the case of the widely usestated conditional In this work, we employ a randomized scheduling of the

modes (ICM) algorithm [11], voxels are updated one atproposed moves, where, at each iteration, eitjanmgpmove

a time, keeping the rest constant (i.e., the best amlong(with random step size) ojumpmin move (with random

candidate field maps is chosen at each step). This makgisection) is performed. At the beginning of the iteration,



air interfaces between heart and lung as well as coronary
stents and sternal wires. In this application, estimatimg t
water/fat images reduces to solving a linear least squares
(LLS) problem at each voxel (finding,, and p: in Eq. 1),
once the field map is known. Errors in the field map estimate
lead to incorrect water/fat decompositions, with possible
swapping of the two components.
Data were acquired on a Siemens ESPREE T scan-

ner using a multi-echo GRE sequence. Figure 3(a)-(c)
e shows results from a cardiac acquisition with echo times

Field map (Hz) {1.6,3.9,6.2} ms. Note the large field inhomogeneity vari-
ation observed at the edges of the field of view (due to
the short, wide bore scanner). Figure 3(d)-(f) shows (for
comparison) results from the same dataset using our own
implementation of a previously proposed method, termed
IDEAL [5]. Figure 4 shows results from a sagittal acquisitio
COMPUTE RESIDUAL R with echo times{4.2,6.7,9.2} ms. For both datasets, the
AT EACH VOXEL, MRF neighborhood consisted of the 8 surrounding voxels,
FOR EACH f; : :

and the MRF weightsyy j were set to the energy of the signal

at each location [7]. The algorithm was stopped after 50
Y iterations. In both cases, uniformly good water/fat sefiana
- is achieved, due to the accuracy of the field map estimates.

Residual

fmm,*Z fm\n,fl fmi",O fmin,1 frnin,z

Fig. 1. Example of residuaR at an individual voxel, and corresponding
jumpminmoves.
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Fig. 2.  Proposed field map estimation algorithm. In the cofethe
algorithm (choosing the best amon§ 2andidate field maps at each step),
the “best” field map is the one minimizing Eq. 5.

Fig. 3.  (a)-(c) Results from proposed method in a cardiacexffat
separation application. (a) Estimated field map (in Hz).Rbepulting water
image. (c) Resulting fat image. (d)-(f) Shown for companisare the
the field map is set to all zeros. The complete algorithm igsults of a previously proposed method (IDEAL) [5]. Note iimproved
shown in Fig 2 performance of the proposed method in regions of high fighdimogeneity,
C e where IDEAL produces erroneous water/fat decompositi@es @rrows in
(e)).
I11. RESULTS ANDDISCUSSION

We have tested the proposed method in a cardiac water/fatin practice, the improved performance of the proposed
separation application, which has recently been proposed method is largely due to the above descripgdpminmoves.
a method to detect fibrofatty infiltration in the myocardiumThese moves allow rapid convergence to a good estimate

[16]. Cardiac imaging is particularly demanding in terms obecause they are tailored to each voxel (as opposed to other
rapid field map estimation due to the presence of tissuéypes of moves, which are generic). However, the proposed
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Fig. 4. Results from proposed method in a water/fat segaratpplication
(sagittal view). (a) Estimated field map (in Hz). (b) Reswgtiwater image.
(c) Resulting fat image.

(2]

algorithm also includes the standajdmp move, which 3]

allows a smoother field map estimate in noisy regions.

In the proposed algorithm (Fig. 2), the bulk of the com- [4]
putation time is spent solving the network flow problem for [5]
choosing the best candidate field map at each iteration. On an
Intel Xeon-based desktop PC with 8 GB of RAM and.&73
GHz CPU, solving this problem at each iteration requiresie]
0.3 s for images of size 192 144, and ® s for images
of size 192x 256 (image sizes from the results shown in [7
this paper). Since a moderate number of iterations suffices t
produce good results, these computation times are acdeptab
in many applications. 8]

Perhaps surprisingly, Eq. 5 (in its discretized versiom) ca
be solved exactly in polynomial time using network flow 4
methods. As shown in Ref. [17], this can be achieved by
constructing the appropriate graph and finding a minimum
cut. This result holds as long as the regularization fumetio (10l
V(fsq, fs,j) is convex, even if the residud is a nonconvex
function of f,, as is the case for field map estimation. Direct!1]
application of the method proposed in Ref. [17] to Eq. (5}12]
requires the manipulation of a very large graph (containing
on the order ofQL? edges ifV is quadratic), making it
impractical for the problem sizes we consider. However, w3
can use it to efficiently compute an initial low-resolution[14]
field map estimate (e.g., size 6464) obtained by globally
minimizing Eq. 5 with¢y penaltyV(foq, fo ) = |foq— o]
(this choice ofV requires only on the order @)L edges in [16]
the equivalent graph). This low-resolution estimate pdesgi
an improved initialization (instead of all zeros) for the
proposed algorithm (see Fig. 2). [17]

For simplicity, in this paper we have focused on the case
where two signal components (water and fat) are presernts]
However, the proposed method can naturally account for
more components (e.g., silicone), and can be used in t
presence of only water [7], [18]. Similarly, the proposed
method has been extended to inclugedecay [19].

IV. CONCLUSIONS

We have introduced a novel formulation for regularized
field map estimation in MRI. The proposed method should
prove useful in many challenging applications where a high
field inhomogeneity is present.

This paper also describes an improved optimization ap-
proach based on VARPRO and network flow algorithms,
which may have application for the regularized estimation
of other nonlinear parameters in different imaging scevsari
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